- 相关推荐
有理数的加法教学设计(精选11篇)
作为一名人民教师,就难以避免地要准备教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。那么写教学设计需要注意哪些问题呢?下面是小编为大家整理的有理数的加法教学设计,希望能够帮助到大家。
有理数的加法教学设计 1
教学目标
1.通过实例,了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。
2.正确地进行有理数的加法运算;用数结合的思想方法得出有理数加法的`法则。并能运用有理数加法解决实际问题。
3.对学生加强数感的培养,感受数的意义,培养实事求是的科学态度,既会独立思考,又能勇于创新。
重点难点重点:
了解有理数加法的意义,会根据有理数加法进行运算。
难点:
有理数加法中的异号两数的加法运算。
教学过程
一、问题情境
小明在一条东西的跑道上先走了5m,又走了3m,如果以向东为正,他两次运动后的总结果是什么?
5+3=8
如果小明先向西运动5m,再向东运动3m,两次运动的结果是什么?
(-5)+(-3)=-8
如果小明先向东运动5m,再向西运动3m,两次运动的结果是什么?
5+(-3)=2
足球循球赛中,通常把进球数记为正,失球数记为负数,它们的和叫做净胜球数。
图中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么红队和蓝队的净胜球数如何表示?
二、知识点拔:
有理数加法法则:
1.同号两数相加,取相同符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,与为相反数的两个数相加得0.
3.一个数同0相加,仍得这个数。
三、例题指导
例1计算
(1)(-3)+(-9)
(2)(-4.7)+3.9
解:(1)(-3)+(-9)=-(3+9)
=-12
(2)(-4.7)+3.9=-(4.7-3.9)
=-0.8
四、练习巩固:
P221、2。
五、小结:
这节课我们学习了哪些知识?
六、作业:
习题1.31、8、12题
有理数的加法教学设计 2
教学目标:
1、使学生掌握有理数加法的运算律,并能运用加法运算律简化运算。
2、培养学生观察、比较、归纳及运算能力。
重点:有理数加法运算律及其运用。
重点:灵活运用运算律
教学过程:
一、创设情境,引入新课
1、小学时已学过的加法运算律有哪几条?
2、猜一猜:在有理数的加法中,这两条运算律仍然适用吗?
3、(1)计算30+(-20)=__________=______,-20+30=___________=_____;
(2)[8+(-5)]+(-4)=_______=______,8+[(-5)+(-4)]=_______=______。
二、讲授新课
教师:你会用文字表述加法的两条运算律吗?你会用字母表示加法的这两条运算律吗?
(学生回答省略)
师生共同归纳:加法交换律:两个数相加,交换加数的`位置,和不变。即:a+b=b+a
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。即(a+b)+c=a+(b+c)
讲解例3
教师:例3中是怎样使计算简化的?这样做的根据是什么?(请两位同学起来回答)
三、巩固知识
教师:例4中用了两种方法,比较两种解法,哪种方法比较好?解法2中使用了哪些运算律?
师生共同得出:解法2比较好,因为它的运算量比较小。解法2中使用了加法交换律和加法结合律。
四、总结
本节课主要学习有理数加法运算律及其运用,主要用到的思想方法是类比思想,需要注意的是:有理数的加法运算律与小学学习的运算律相同,运用加法运算律的目的为了简化运算。解题技巧是将正数分别相加,再把负数分别相加,然后再把它们的和相加。
五、布置作业
有理数的加法教学设计 3
【教学目标】
1.理解有理数加法的实际意义;
2.会作简单的加法计算;
3.感受到原来用减法算的问题现在也可以用加法算.
【对话探索设计】
〖探索1〗
(1)某仓库第一天运进300吨化肥,第二天又运进200吨化肥,两天一共运进多少吨?
(2)某仓库第一天运进300吨化肥,第二天运出200吨化肥,两天总的结果一共运进多少吨?
(3)某仓库第一天运进300吨化肥,第二天又运进-200吨化肥,两天一共运进多少吨?
(4)把第(3)题的.算式列为300+(-200),有道理吗?
(5)某仓库第一天运进a吨化肥,第二天又运进b吨化肥,两天一共运进多少吨?
〖探索2〗
如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么?
假设原点为运动起点,用下面的数轴检验你的答案.
在足球比赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.若某场比赛红队胜黄队5:2(即红队进5个球,失2个球),红队净胜几个球?
〖小游戏〗
(请一位同学到黑板前)前进5步,又前进-3步,那么两次运动后总的结果是什么?若是后退-1步,又后退3步呢?
〖练习〗
1.登山队员第一天向上攀登,第二天又向上攀登(天气恶劣!),两天一共向上攀登多少米?
2.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?
〖补充作业〗
1.分别用加法和减法的算式表示下面每小题的结果(能求出得数最好):
(1)温度由下降;
(2)仓库原有化肥200t,又运进-120t;
(3)标准重量是,超过标准重量;
(4)第一天盈利-300元,第二天盈利100元.
2.借助数轴用加法计算:
(1)前进,又前进,那么两次运动后总的结果是什么?
(2)上午8时的气温是,下午5时的气温比上午8时下降,下午5时的气温是多少?
3.某潜水员先潜入水下,他的位置记为.然后又上升,这时他处在什么位置?
有理数的加法教学设计 4
一、教学内容分析
本节课是有理数加法的法则推导和计算,在此基础上,学生已经学过了正数和负数的认识及实际表示的意义和有理数的大小比较。本节课将在此基础上授导学生学习有理数的加法法则,解决同号、异号两数相加的计算。
二、学习者分析
七年级的学生,其思维已经明显地具备了逻辑思维性,并且学生已经在我的要求下,学会了预习、初步养成了预习的习惯,逐渐养成了合作交流的习惯。只要我们教师通过具体的问题的指引、学生小组间的合作和交流,是可以完成本节课的教学目标的。
三、教学目标
1、使学生掌握有理数加法法则,并能运用法则进行计算;
2、让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;
3、让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。
四、信息技术应用分析
由于本节课的知识点是探究有理数加法法则,要求学生掌握并会运用,所以为了节省时间和极大的提高学生的学习兴趣,选用了多媒体进行教学,把所有的内容用电子的白板展示出来。
五、教学过程
1、复习提问,引入新知
通过对小学加法及数轴知识的应用的.复习,让学生既巩固了原来所学的知识,又可以引出新课。
2、出示问题情境、解决新知
在解决新知的过程中,由于学生利用已有的知识及题目提示,运用学生互相合作交流,并且由各个小组进行展示答案。
3、探索发现,归纳新知
利用学生展示的答案,学生分组进行归纳总结,得出有理数运算法则。
学生通过合作交流,养成在日常生活中和别人交流合作的好习惯。,通过展示成果培养了学生的自信心。
4、展示例题、应用新知
此环节巩固了所学知识,并且通过本环节让学生体会小组合作的乐趣,体会利用法则解决实际问题的方法。
5、达标训练,巩固新知
本环节进一步巩固了所学的知识,在互动回答是采用哪个小组举手多、举得早,让哪个小组来回答;让学生养成一种竞争意识,合作交流意识。
6、规律总结,升华新知
本环节着重总结有关有理数加法法则,让学生进行小结,逐步养成学生在解决问题时随时总结规律的习惯,并对本节课的知识进行梳理、加深和巩固。
7、作业和运用,拓展新知
通过作业学生进一步巩固所学知识,强化对知识的理解和应用,通过挑战自我来拓展学生知识面,发展学生的认识。
有理数的加法教学设计 5
教学目标
1.能运用加法运算律简化加法运算.
2.理解加法运算律在加法运算中的作用,适当进行计算以及训练.
3.培养学生的观察能力和思考能力,经历对有理数的运算,领悟解决问题应选择适当的方法,在数学学习中获得成功的体验。
教学难点
如何运用加法运算律简化运算
知识重点
灵活运用加法运算律
教学过程(师生活动)
设计原则
复习知识
引入课题
通过展示四道题目,让学生分析是运用哪条有理数加法法则,进而进一步总结复习有理数加法法则。
师提问:有理数加法运算能不能更简便呢?我们这节课就来探讨一下。
(出示课题)有理数的加法运算律
让学生感受到有理数的运算在实际中是很简单的,激发学生学习新知识的兴趣
分析问题
探究新知
1.让学生运用有理数加法法则自主运算
注意:符号的确定是由几种情况决定的①同号两数相加,取相同的'符号.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号
2.观察四组算式中的加数和他们的和,提问:有什么发现?从加数的位置,和的角度探讨
3.通过练习和讨论,引导学生得出:
交换律--两个有理数相加,交换加数的位置,和不变
用代数式表示:a+b=b+a
运算律式子中的字母a、b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数
4.两个运算律分别是交换律和结合律,在得出交换律的基础上,运用同样的推导方法进行归纳总结。
(1)(小组合作)自主做题,将步骤和答案写出,并将答案在小组里订正
(2)交流汇报.从运算顺序,和的角度进行探讨.(各学习小组的汇报结果,用实物投影仪展示)
(3)说一说运用的加法法则是什么?(①运算顺序,②和)指导学生用自己的语言进行归纳
(4)在学生归纳的基础上,教师出示有理数加法运算律:结合律
结合律--三个数相加,先把前两个数相加,或者先把后两个数相加,它们的和不变
用代数式表示:a+(b+c)=(a+b)+c
(用投影仪展示)
有理数加法交换律:
1.两个数相加,交换加数的位置,和不变。
2.三个数相加,先把前两个数相加,或者先把后两个数相加,它们的和不变
让学生在情境中感受到有理数运算使用的两个运算律,渗透分类讨论思想
教师需对学生进行相应,点拨、指导,引导学生对有理数相加运算时进行相应的步骤,体现教师的引领作用
①交换律是两个加数相加,结合律是三个加数相加,那四个数相加或者更多的数相加也可以运用交换律和结合律
②教师巡堂随时进行相关的指导,关注每一们学生及各个学习小组的活动情况,及时做好引导
解决问题
解决问题(板书或用投影仪进行展示)
例1计算:
下列运用加法交换律的变形中,错误的是()
A.30+20=20+30
B.(-5)+(-13)=(-13)+(-5)
C.(-37)+16=16+(-37)
D.10+(-20)=20+(-10)
教师板演,让学生说出加法交换律的应用方法.
例2计算:
(+23)+(?12)+(+7)
例3计算:
(?1/3)+(?5/2)+(?2/3)+(+1/2)
引导学生,让学生明确做有理数的加法应怎样运用两条运算律:
(1)加法交换律;
(2)加法结合律.
学生活动:请学生总结做题过程中运用哪些方法可以简化运算。
注意点:
(1)学会运用运算律解题
(2)教师板演的例题要完整体现过程,并要求学生在刚开始学的时候要把中间的过程写完整
(3)体现化归思想
(4)这里增加了两道题目,要是让学生能较为熟练地运用运算律进行计算
拓宽学生视野,让学生体会到数学与实践的密切联系。
课堂练习
导学案上的练习题
小结与作业
课堂小结
通过这一节课的学习,你有何收获?(让学生口答)
本课作业
必做题:阅读教科书第47页,教科书第49页练习题1、2题。
本课教育评注(课堂设计原则,实际教学效果及改进设想)
教后反思:
本节课的难点是运用交换律和结合律进行加法运算,学生在学习过程中很容易总结出来,但是同时运用两个规律解题就不知道怎么来运算。要引导学生从做题过程中总结几种方法,课下多加练习进行巩固。
有理数的加法教学设计 6
1.3.1有理数的加法
一、教学目标
(一)知识与技能:通过实例,了解有理数加法的意义,会根据有理数加法法则进行运算;
(二)过程与方法:经历有理数加法法则的探究过程,深刻感受分类讨论、数形结合的思想,由具体到抽象、由特殊到一般的规律;
(三)情感态度与价值观:通过师生活动,学会自我探究,让学生充分参与到数学学习的过程中来。
二、教学重、难点
重点:了解有理数加法的意义,会根据有理数加法法则进行运算;难点:有理数的加法中异号两数如何进行加法运算。
三、教学过程
(一)创设情境,导入问题
活动1学校的运动会刚结束不久,我们知道在足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。那么,在本次运动会中,我们学校红队进4个球,失两个球。蓝队进一个球,失一个球。请问两队的净胜球数分别是多少?如何表示?
红队:4+(-2)蓝队:1+(-1)
师:请同学们观察这两个式子,和我们小学所学的加法运算有什么不同呢?生:有了负数的.参加师:像这种有了负数的参加的加法运算我们称为什么?想知道有理数是如何进行相加的呢?那么我们今天就来共同研究——有理数的加法(引出课题)。设计意图:采用与生活实际相关的足球比赛引入,通过净胜球数说明实际问题中要用到正数与负数的加法,从而提出问题,让学生思考,可以激发学生探究的热情。
(二)启发探索,获取新知活动2看下面的问题
1、一个物体作左右方向的运动,我们规定向左为负,向右为正。向右运动5m记作5m,向左运动5m记作-5m.
如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向右运动8m.写成算式就是:5+3=8①
2、如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向左运动8m.写成算式就是:(-5)+(-3)=-8②
这个运算也可以用数轴表示,其中假设原点O为运动起点:
-3–9–8–7–6–5-8–4-5–3–2–1O 4、如果用正数表示向右运动,用负数表示向左运动,就可以用算式描述相应的问题。
活动31、如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向右运动了2m,写成算式就是:5+(-3)=2③
用数轴表示为:
5-3O122345
2、探究;利用数轴求以下情况时物体两次运动的结果:
(1)先向左运动5m,再向右运动3m,物体从起点向___运动了___m;
(2)先向右运动5m,再向左运动5m,物体从起点向___运动了___m;
(3)先向左运动5m,再向右运动5m,物体从起点向___运动了___m;
(4)如果物体第一秒向右(或左)运动5m,第二秒原地不动,两秒后物体从起点向右(或左)运动了___m.
师生行为:让学生自己探究,利用数轴可得出相应结果,依次填空;引导列算式为:-5+3=-2④
5+(-5)=0⑤-5+5=0⑥5+0=5或-5+0=-5⑦
设计意图:通过表演、结合数轴,其目的是让学生了解用数轴表示加法的方法,从而为后面利用数轴探究其他情况做准备。
异号相加有三种情况,要充分利用数轴,由在数轴上表示结果的点所处的位置以及表示结果的点与原点的距离,就可以确定两次运动的结果。
引导学生观察①到⑦的式子中可以发现什么规律?(①②两式是同号两数相加、③④⑤⑥是异号两数相加且⑤⑥是两加数绝对值相等、⑦是一个数与0相加)
请同学们分组讨论研究和的符号以及绝对值与两个加数之间的符号以及加数绝对值之间有什么关系?从而分组概括有理数的加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加
2、绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0
3、一个数同0相加,仍得这个数
有理数运算三个步骤:①确定类型②确定和的符号③确定和的绝对值
设计意图:运算法则是从实例引出的,这时说明法则的合理性。使理解法则并学会运用法则
(三)运用新知
活动5例1计算(1)(-3)+(-9)(2)-4.7+3.9
解:原式=-(3+9)解:原式=-(4.7-3.9)=-12=-0.8
例2足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数。
(四)巩固新知,变式练习(课本P22)1.用算式表示下面的结果:(1)温度由-4℃上升7℃;
(2)收入7元,又支出5元。2.计算:
(1)15+(-22);
(2)(-13)+(-8);
(3)(-0.9)+1.5;
(4)+(-).
(五)课堂总结,布置作业
这节课我们学习了哪些知识?你有什么收获?(师生一起回顾有理数加法法则)
作业:习题1.3第1、7、11
有理数的加法教学设计 7
教学目标:
1.知识与技能:使学生理解加减法统一成加法的意义,能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,2.过程与方法:经历加减法统一成加法的过程,体会加法的运算律在运算中的应用
3.情感、态度与价值观:渗透用转化的思想看问题以及解决问题,鼓励学生依据法则简化运算
教学重点:
能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,教学难点:
准确、熟练地进行加减混合运算
教学过程
一、课前预习
1、有理数的加法法则是什么? 2、有理数的.减法法则是什么? 3、有理数的加法有什么运算律?具体内容是什么? 4、计算下列各题(1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12二、自主探索
根据有理数减法法则,有理数的加减混合运算可以统一为加法运算
例1、计算(1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ )解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)---------------------------统一为加法= 26+(-42)---------------------------------------运用运算律=-16 (2) (3)(4) (5)算式(-6)-(-13)+(-5)-(+3)+(+6)是有理数的加减混合运算,我们还可以按下列步骤进行计算:解:(-6)-(-13)+(-5)-(+3)+(+6)
=(-6)+(+13)+(-5)+(-3)+(+6)------------统一加号=-6+13-5-3+6----------------------------------------省略加号=-6-5-3+13+6-----------------------------------------运用运算律=-14+19=5说明:省略加号的形式-6+13-5-3+6表示-6,+13,-5,-3,+6这五个数的和。
例2.计算:
(1) -3-5+4 (2)-26+43-24+13-46解:(1) (2)
例4、若a=-2,b=3,c=-4,求值
(1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c
解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 ---------- [数据代入时,注意括号的运用] (2) (3)(4)
例5、在伊拉克的战争中,谋生化小组沿东西方向路进行检查,约定向东为正,某天从A地到B地结束时行走记录为(单位:km) +15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5问:(1)B地在A地何方,相距多少千米? (2)这小组这一天共走了多少千米
三、学习小结
这节课你学会了哪几种运算?
四、随堂练习
A类
1、计算:(1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3) (3)(+ )-(- )+(- )-(+ ) (4) -7.52+ -1.48
(5)21-12+33+12-67 (6)-3.2+5.8-8.6+12
2计算
(1) 1+2-3-4+5+6-7-8++97+98-99-100
(2) 66-12+11.3-7.4+8.1-2.5
(6)-2.7-[3-(-0.6+1.3)]
B类
3.计算(1) + + ++ (2) + + ++
有理数的加法教学设计 8
教学目标:
1、知识与技能: 理解有理数加法的运算律,能熟练地运用运算律简化有理数加法的运算,能灵活运用有理数的加法解决简单实际问题。
2、过程与方法: 经过有理数加法运算律的探索过程,了解加法的运算律,能用运算律简化运算。
重点、难点:
1、重点:运算律的理解及合理、灵活的运用。
2、难点:合理运用运算律。
教学过程:
一、创设情景,导入新课
1、叙述有理数的加法法则。
2、有理数加法与小学里学过的数的加法有什么区别和联系?
答:进行有理数加法运算,先要根据具体情况正确地选用法则,确定和的符号,这与小学里学过的数的加法是不同的;而计算和的绝对值,用的是小学里学过的加法或减法运算。
二、合作交流,解读探究
1、计算下列各题,并说明是根据哪一条运算法则?
(1) (-9.18)+6.18; (2) 6.18+(-9.18); (3) (-2.37)+(-4.63)
2、计算下列各题:
(1) +(-4); (2) 8+;
(3) +(-11); (4) (-7)+;
(5) +(+27); (6) (-22)+.
通过上面练习,引导学生得出:
交换律两个有理数相加,交换加数的位置,和不变。
用代数式表示上面一段话:
a+b=b+a
运算律式子中的字母a,b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数。
结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.
用代数式表示上面一段话:
(a+b)+c=a+(b+c)
这里a,b,c表示任意三个有理数。
根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加。
三、应用迁移,巩固提高
例(P22例3) 计算:
(1) 33+(-2)+7+(-8)
(2) 4.375+(-82)+( -4.375)
引导学生发现,在本例中,把正数与负数分别结合在一起再相加,有相反数的'先把相反数相加;能凑整的先凑整;有分母相同的,先把同分母的数相加,计算就比较简便。
本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:首先消去互为相反数的两数(其和为0),同号结合或凑整数。
例2(P23例4)
教师通过启发,由学生列出算式,再让学生思考,如何应用运算律,使计算简便。第一问可以让学生自已作行程示意图帮助理解,注意第一问和第二问的区别。
练习 课本P.23练习:1、2
四、总结反思
本节课你有哪些收获?
五、作业
1、课本P27习题1.4A组第3、4题
2、课本P28习题1.4B组第12题
有理数的加法教学设计 9
【教学目标】
1. 通过学习,能感受到数学知识来源于生活又可应用于实际生活,激发学习的兴趣。
2.通过探索,能归纳总结出有理数加法法则,理解有理数加法的意义渗透分类思想。
3.掌握有理数加法法则,并能准确地进行有理数加法运算。
【学习重点、难点】
重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算;
难点:异号两数如何相加的法则。
【学习过程】
一、 预习自学:
1.蛋糕店上半年挣5万,下半年挣3万,请问一年共挣多少钱?
2.蛋糕店上半年赔5万,下半年赔3万,请问一年共挣多少钱?
3.蛋糕店上半年挣5万,下半年赔3万,请问一年共挣多少钱?
4.蛋糕店上半年赔5万,下半年挣3万,请问一年共挣多少钱?
5.蛋糕店上半年挣5万,下半年赔5万,请问一年共挣多少钱?
6.蛋糕店上半年赔5万,下半年挣0万,请问一年共挣多少钱?
请你列式计算,并引导学生对前面的七个加法运算进行合理的分类探讨:和的符号怎样确定?和的绝对值怎样确定?(小组讨论展示)
二、 教师点拨
知识点一:引导学生对前面的七个加法运算进行合理的分类
同号两数相加: (+5)+(+3)= ______.(-5)+(-3)= ______
异号两数相加:(+5)+(-3)= ______;(-5)+(+3)= ______;
(+5)+(-5)=______
一数与零相加: (-5)+0=______;
知识点二:探讨:和的符号怎样确定?和的绝对值怎样确定?
结论:有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
三.例题精讲;例1(学生自学,教师示范。注意解题步骤)
四、课堂练习;36页随堂练习与习题(小组展示交流)
五、当堂检测;
1.用生活中的.事例说明下列算是的意义,并计算出结果:
(-2)+(-3);(-3)+2
2.有理数加法法则:
绝对值不相等的两数相加,取绝对值的加数的符号,并用较大的绝对值较小的绝对值. 互为相反数的两个数相加得.
3.计算:(+15)+(-7);(-39)+(-21);
(-37)+22;(-3)+(+3)
有理数的加法教学设计 10
教学目标:
1、会进行有理数加法运算,理解有理数加法法则。
2、初步的分类思想。
3、使学生主动的参与特定数学活动,通过实验猜测,自主探索,灵活选取适当的算法。
4、通过实验,猜测,互相合作,自主探索获取知识。
教学重点:
理解有理数加法法则及运用
教学难点:
有理数的加法法则
教学过程:
一、 情境创设:
甲、乙两队进行足球比赛,如果甲队在主场以4∶1赢了3球,在客场以1∶3输了2球,那么两场累计甲队净胜多少球? 如果把赢球记为+,输球记为-,可得算式:
填写表中净胜球数和相应的算式:
赢球数
净胜球数
算 式
主 场 客 场
+3 +2 5 (+3)+(+2)=5
-3 -2 -5 (-3)+(-2)=-5
+3 -2 1 (+3)+(-2)=1
-3 +2 -1 (-3)+(+2)=-1
-3 +3 0 (-3)+(+3)=0
0 -3 -3 0+(-3)=-3
你还能举出一些关于有理数加法的例子吗?
二、数学实验室:
1. 如图,把笔尖放在数轴的原点先向正方向移动3个长度单位,再向负方向移动2个长度单位,这时笔尖的位置表示什么数?请用算式表示以上过程及结果。
2. 把笔尖放在原点,先向负方向移动1个长度单位,再向负方向移动2个长度单位,这时笔尖的位置表示什么数?请用算式表示以上过程及结果。
3.仿照上面的做法,请在数轴上呈现下面的算式所表示的笔尖运动的过程和结果。
1、任意两个有理数相加,和是多少?
2、两个有理数相加时,和的符号及绝对值怎样确定?
3、你能找到有理数相加的一般方法吗?
三、讨论、交流尝试得出有理数加法法则:
(+3)+(+2)=5 同号相加和的符号与两个加数的
(-3)+(-2)=-5 符号一致, 和的绝对值等于两个加数绝对值之和。
(+3)+(-2)=1 异号相加当两个加数绝对值不等时,和的'符号与绝
(-3)+(+2)=-1 对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去加数较小的绝对值。
(-3)+(+3)=0 当两个加数绝对值相等时,两个加数互为相反数,和为零。
0+(-3)=-3 一个数同零相加,仍得这个数。
这样我们就得到有理数加法的法则:
有理数加法法则 同号两数相加,取相同的符号,并把绝对值相加。异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。一个数与0相加,仍得这个数。
四、例题教学:
计算: (1)(-180)+(+20) (2)(-15)+(-3)
(3)5+(-5) (4)0+(-2)
小结:
有理数加法运算的一般步骤:(1)分类型;(2)确定和的符号;(3)确定和的绝对值。
五、练习题:
1.计算: (1)100+(-20) (2)(-20)+(-15) (3)(-65)+(+15)
(4)(-8)+8 (5)(-2)+0 (6)(-24)+(+32)
2、计算:
(1)(- )+(- ); (2)(2 )+(+3 ); (3)(+19 )+(-11 );
3、解答题:
(1) 已知 ⑴ 求 ⑵ 若又有 ,求 .
(2) 某出租车沿公路左右行驶,向左为正,向右为负,某天从农工商出发后到收工回家所走的路线如下:(单位:千米)-8 , +3 , -9 , +7 , +2,⑴ 问收工时在农工商的哪边?距离农工商有多少千米?
⑵ 若该出租车每千米耗油0.5升,问从农工商出发到收工共耗油多少升?
有理数的加法教学设计 11
学习目标:
1.理解有理数加法意义
2.掌握有 理数加法法则,会正确进行有理数加法运算
3.经历探究有理数有理数加法法则过程,学会与他人交流合作
学习难点:
异号两数相加的法则
学法指导:
在探讨有理数的加法法则问题时,利用物体在同一直线上两次运动的过程,理解有理数运算法则。先仔细观察式子的特点,找到合理的运算步骤,使加法运算简便。
学习过程
(一)课前学习导引:
1. 如果向东走5米记作+5米,那么向西走3米记作
2. 比较 大小:2 -3,-5 - 7,4
3. 已知a=-5,b=+ 3, 则︱a ︳+︱ b︱=
(二)课堂学习导引
正有理数及0的加法运算,小学已经学过,然而实 际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它 们的和叫做 净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是
(1)红队的净胜球数为 4+(-2) ,
(2)蓝队的净胜球数为 1+(-1) 。
这里用到正数和负数的加法。那么,怎样计算4+(-2),1+(-1)的结果呢?
现在让我们借助数轴来讨论有理数的加法:某人从一点出 发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少?规定向东为正,向西为负,请同学们用数学式子表示
①先向东走了5米 ,再向东走3米 ,结果怎样?可以 表示为
②先向西走了5米,再向西走了3米,结果如何?可以表示为:
③先向东走了5米,再向西走了3米,结果呢?可以表示为:
④先向西走了5米,再向东走了3米,结果呢?可以表示为:
⑤先向东走了5米,再向西走了5米,结果呢?可以表示为:
⑥先向西走5米,再向东走5米,结果呢?可以表示为:
从以上几个算式中总结有理数加法法则:
(1)、同号的`两数相加,取 的符号,并把 相加.
(2).绝对值不相等的异号两数相加, 取 的加数 的 符号, 并用较大的绝对值 较小的绝对值. 互为相反数的 两个数相加得 .
(3)、一个数同0相加,仍得 。
例1 计算(能完成吗,先自己动动手吧!)
(-3)+( -9) (2)(-4.7)+3.9
例2 足球循环赛中,
红队胜黄队4: 1,黄队胜蓝队1 :0,蓝队胜红队1: 0,计算 各队的 净胜球数。
解:每个队的进球总数记为正数,失球总数记为负数,这 两数的和为这队的净胜球数。
三场比赛中,
红队共进4球,失2球,净胜球数为(+4)+(2)=+(42 )= ;
黄队共进2球,失4球,净胜球数为(+2)+(4)= (4
蓝队共进( )球,失( )球, 净胜球数为 = 。
(三)课堂检测导引:
(1)(-3)+(-5)= ; (2)3+(-5)= ;
(3)5+(-3)= ; (4)7+(-7)= ;
(5)8+(-1)= ; (6)(-8)+1 = ;
(7)(-6)+0 = ; (8)0+(-2) = ;
(四)课堂学习小结
1.本节课中你学到了什么知识?
2.你觉得有理数加法比较难掌握的是哪里?
(五)学后拓延导引
1.计算:
(1)(-13)+(-18); (2)20+(-14);
(3)1.7 + 2.8 ; (4)2.3 + (-3.1);
(5) (- )+(- ); (6)1 +(-1.5 );
(7)(-3.04)+ 6 ; (8) +(- ).
2.判断题:
(1)两个负数的和一定是负数; ( )
(2)绝对值相等的两个数的和等于零; ( )
(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数; ( )
(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数. ( )
3.当a = -1.6,b = 2.4时,求a+b和a+(-b)的值.
【有理数的加法教学设计】相关文章:
《有理数加法法则》教学设计范文10-03
有理数加法教学反思(精选15篇)09-23
有理数加法教学反思15篇09-12
有理数加法说课稿06-06
《有理数的加法》说课稿09-27
《有理数加法》说课稿07-24
有理数的加法法则09-27
有理数的加法教案05-20
有理数的加法说课稿10-23
《有理数的加法》说课稿07-16