初一的数学知识点总结
在年少学习的日子里,不管我们学什么,都需要掌握一些知识点,知识点就是掌握某个问题/知识的学习要点。为了帮助大家掌握重要知识点,下面是小编整理的初一的数学知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。
初一的数学知识点总结 1
一、知识梳理
知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。
知识点2:有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:
注:有限小数和无限循环小数都可看作分数。
知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。
知识点4:绝对值的概念:
(1)几何意义:数轴上表示a的点与原点的距离叫做数a的.绝对值,记作|a|;
(2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。
注:任何一个数的绝对值均大于或等于0(即非负数).
知识点5:相反数的概念:
(1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;
(2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。
知识点6:有理数大小的比较:
有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。
数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。
用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。
知识点7:有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
知识点8:有理数加法运算律:
加法交换律:两个数相加,交换加数的位置,和不变。
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数。
知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。
初一的数学知识点总结 2
1、数轴的概念
规定了原点,正方向,单位长度的直线叫做数轴。
注意:
⑴数轴是一条向两端无限延伸的直线;
⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;
⑶同一数轴上的单位长度要统一;
⑷数轴的三要素都是根据实际需要规定的。
2、数轴上的.点与有理数的关系
⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)
3、利用数轴表示两数大小
⑴在数轴上数的大小比较,右边的数总比左边的数大;
⑵正数都大于0,负数都小于0,正数大于负数;
⑶两个负数比较,距离原点远的数比距离原点近的数小。
4、数轴上特殊的(小)数
⑴最小的自然数是0,无的自然数;
⑵最小的正整数是1,无的正整数;
⑶的负整数是—1,无最小的负整数
5、a可以表示什么数
⑴a>0表示a是正数;反之,a是正数,则a>0;
⑵a<0表示a是负数;反之,a是负数,则a<0
⑶a=0表示a是0;反之,a是0,则a=0
初一的数学知识点总结 3
第一章有理数
(一)正负数
1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数
1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整数之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)
2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴
1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)
2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。
(四)有理数的加减法
1.先定符号,再算绝对值。
2.加法运算法则:同号相加,取相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。
3.加法交换律:a+b= b+ a两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+ c = a +(b+ c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5.ab = a +(b)减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)
1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab= ba
4.乘法结合律:(ab)c = a(b c)
5.乘法分配律:a(b +c)= a b+ ac
(六)有理数除法
1.先将除法化成乘法,然后定符号,最后求结果。
2.除以一个不等于0的数,等于乘这个数的倒数。
3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。
(七)乘方
1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)
2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。
(八)有理数的加减乘除混合运算法则
1.先乘方,再乘除,最后加减。
2.同级运算,从左到右进行。
3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
(九)科学记数法、近似数、有效数字。
第二章整式
(一)整式
1.整式:单项式和多项式的统称叫整式。
2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。
3.系数:一个单项式中,数字因数叫做这个单项式的系数。
4.次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。
5.多项式:几个单项式的和叫做多项式。
6.项:组成多项式的每个单项式叫做多项式的项。
7.常数项:不含字母的项叫做常数项。
8.多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。
9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
10.合并同类项:把多项式中的'同类项合并成一项,叫做合并同类项。
(二)整式加减
整式加减运算时,如果遇到括号先去括号,再合并同类项。
1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变
第三章一元一次方程
分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
(一)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫方程。
(二)一元一次方程:
1.一元一次方程:方程里只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。
2.解:求出的方程中未知数的值叫做方程的解。
(二)等式的性质
1.等式两边加(或减)同一个数(或式子),结果仍相等。
如果a= b,那么a± c= b± c
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a= b,那么a c= b c;
如果a= b,(c0),那么a ∕c = b ∕ c。
(三)解方程的步骤
解一元一次方程的步骤:去分母、去括号、移项、合并同类项,未知数系数化为1。
1.去分母:把系数化成整数。
2.去括号
3.移项:把等式一边的某项变号后移到另一边。
4.合并同类项
5.系数化为1
第四章图形认识初步
一、图形认识初步
1.几何图形:把从实物中抽象出来的各种图形的统称。
2.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形。
3.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形。
4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
5.点,线,面,体
①图形是由点,线,面构成的。
②线与线相交得点,面与面相交得线。
③点动成线,线动成面,面动成体。
二、直线、线段、射线
1.线段:线段有两个端点。
2.射线:将线段向一个方向无限延长就形成了射线。射线只有一个端点。
3.直线:将线段的两端无限延长就形成了直线。直线没有端点。
4.两点确定一条直线:经过两点有一条直线,并且只有一条直线。
5.相交:两条直线有一个公共点时,称这两条直线相交。
6.两条直线相交有一个公共点,这个公共点叫交点。
7.中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。
8.线段的性质:两点的所有连线中,线段最短。(两点之间,线段最短)
9.距离:连接两点间的线段的长度,叫做这两点的距离。
三、角
1.角:有公共端点的两条射线组成的图形叫做角。
2.角的度量单位:度、分、秒。
3.角的度量与表示:
①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
②一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60进制。
4.角的比较:
①角也可以看成是由一条射线绕着他的端点旋转而成的。
②平角和周角:一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。平角等于180度。周角等于360度。直角等于90度。
③平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
④工具:量角器、三角尺、经纬仪。
5.余角和补角
①余角:两个角的和等于90度,这两个角互为余角。即其中每一个是另一个角的余角。
②补角:两个角的和等于180度,这两个角互为补角。即其中一个是另一个角的补角。
③补角的性质:等角的补角相等
④余角的性质:等角的余角相等
初一的数学知识点总结 4
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
(2)有理数的分类:①整数②分数
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的'特性;
(4)自然数0和正整数;a>0a是正数;a<0a是负数;
a≥0a是正数或0a是非负数;a≤0?a是负数或0a是非正数.
有理数比大小:
(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;
(6)大数-小数>0,小数-大数<0.
初一的数学知识点总结 5
有理数
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的.原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解的一般步骤
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
初一的数学知识点总结 6
第一章:有理数
★0既不是正数,也不是负数。0是正数和负数的分界。★整数的概念:正整数、0、负整数统称为整数。★分数的概念:正负数和负分数统称为分数。★有理数的概念:整数和分数统称为有理数。
★数轴的概念:规定了原点、正方向、单位长度的一条直线叫数轴。
(1)在直线上任意取一点表示数0,这个点叫做原点;
(2)通常规定直线上从原点向右(上)为正方向,从原点向左(或下)为负方向;
(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,
依次表示1,2,3,---;从原点向左,用类似的方法依次表示-1,-2,-3。
★相反数的概念:只有符号不同的两个数叫做互为相反数。0的相反数是0。互为相反数的两个点关于原点对称。
★绝对值的概念:一般地,数轴上表示数的a的点与原点的距离叫做数a的绝对值。记作a。
由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
★有理数比较大小:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。所以由这个规定可知:
(1)正数大于0,0大于负数;正数大于负数;
(2)两个负数,绝对值大的反而小。
备注:异号两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑它们的绝对值。
★有理数加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3、一个数同0相加,仍是这个数。
★有理数的加法中,两个数相加,交换加数的位置,和不变。加法交换律:a+b=b+a.★有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。加法结合律:(a+b)+c=a+(b+c)。【结合原则:同号结合;同分母结合;互为相反数结合;凑整结合。】
★有理数减法法则:减去一个数,就等于加上这个数的相反数。即:a-b=a+(-b).
★有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。
备注:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
★有理数中仍然有:乘积是1的两个数互为倒数。
★一般地,有理数乘法中,两个数相乘,交换因数的位置,积不变。乘法交换率:abba;三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。乘法结合律:(ab)ca(bc)。
★一般地,一个数同两个数的和相乘,等于把这个数分别同中两个数相乘,再把积相加。分配律:a(bc)abac
★有理数除法法则:除以一个不等于0的数,等于乘上这个数的倒数。
备注:从有理数除法法则容易得出:两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
★有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。a的n次方也可以读作a的n次幂。
备注:负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数。0的任何正整数次幂都是0。
★有理数的混合运算,应注意以下运算顺序:先乘方,再乘除,最后加减。2。同级运算,从左到右依次计算。3。如有括号,先做括号内的运算,按小括号、中括号、大括号依次计算。
★科学计数法:把一个大于10的数表示成ax10(其中a是整数数位只有一位的数,n是正整数)
★近似数与准确数的接近程度,可以用精确度表示。
★有效数字:从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。
第二章:整式的加减(为一元一次方程的学习打下基础)
◆单项式概念:比如100t、a的平方、2.5x、vt,-n,它们都是数或者字母的积,像这样的式子叫做单项式。单独的一个数或一个字母也是单项式。单项式中数字因数叫做这个单项式的系数。
◆一个单项式中,所有字母的指数的和叫做这个单项式的次数。
◆多项式的概念:几个单项式的和叫做多项式。其中每个单项式叫做多项式的项,不存在字母的项叫做常数项。
◆多项式里次数最高项的次数,叫做这个多项式的次数。◆整式的概念:单项式与多项式统称整式。
◆同类项概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也是同类项。
◆把多项式中的同类项合并成一项,叫做合并同类项。
◆合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母部分不变。◆去括号法则:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
第三章:一元一次方程
▲含有未知数的等式叫方程(equation)。
▲使方程左右两边相等的未知数的值,叫做方程的解(solution)。▲只含有一个未知数(元),未知数的'次数都是1,这样的方程叫做一元一次方程。▲等式的性质:1、等式两边加(或减)同一个数(或式子),结果仍相等。
2、等式;两边乘同一个数,或除以同一个不为0的数,结果仍相等。▲用一元一次方程分析和解决实际问题的基本过程如下:
(实际问题)设未知数,列方程数学问题(一元一次方程)解方程(数学问题的解)检验(实际问题的答案)。
▲解方程的具体步骤:1、去分母(方程两边同乘各分母的最小公倍数);2、去括号(去括号法则);3、移项(定义);4、合并同类项(法则,同类项的定义);5、系数化为1。
▲实际问题与一元一次方程:一元一次方程是最简单的方程。运用方程解决问题的关键是分析问题中的数量关系,找出其中的相等关系,并由此列出方程。
第四章:图形认识的初步
※我们把从实物中抽象出的各种图形统称为几何图形。几何图形是数学研究的主要对象
之一。几何图形又分为立体图形和平面图形。
※长方体、正方体、圆柱、圆锥、球、棱锥等都是几何体。几何体也简称体(solid)。包围着体的是面(surface)。面有平面和曲面。
※几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。※经过两点有一条直线,并且只有一条直线。简述:两点确定一条直线。※直线一般用1个小写字母表示或者用直线上的两个大写字母表示。※射线和线段都是直线的一部分。类似于直线的表示。
※两点的所有连线中,线段最短。简述:两点之间,线段最短。※连接两点间的线段的长度,叫做中两点的距离(distance)。
※在国际单位制中,长度的基本单位是米(m)。常用的单位还有千米、分米、厘米、毫米、微米等。
1纳米等于十亿分之一米。
※在天文学上,常用天文单位和光年计算星体间的距离。1天文单位是地球到太阳的平812
均距离,约1.5x10千米,1光年就是光1年走过的距离,约等于9.46x10千米。
※航海上经常用到的长度单位海里(1海里=1852米);※有公共端点的两条射线组成的图形叫做角(angle)。这个公共点叫做角的顶点,这两条射线是角的两条边。
※我们常用量角器量角,度(degree)、分、秒是常用的角的度量单位。
※角的度、分、秒是60进制的。以度、分、秒为单位的角的度量制,叫做角度制。※常用的量角工具有,量角器,工程常用的经纬仪。
※从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
※余角(complementaryangle):如果两个角的和等于90度(直角),就说中这两个角互为余角,即其中每一个角是另一个角的余角。余角的性质:等角的余角相等。
※补角(supplementaryangle):如果两个角的和等于180度(平角),就说这两个角互为补角,其中一个角是另一个角的补角。补角的性质:等角的补角相等。
※上北下南;左西右东。西北,即是北偏西45度。
第五章平行线与相交线
一.台球桌面上的角
※1.互为余角和互为补角的有关概念与性质
如果两个角的和为90°(或直角),那么这两个角互为余角;如果两个角的和为180°(或平角),那么这两个角互为补角;
注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。
它们的主要性质:同角或等角的余角相等;同角或等角的补角相等。
二.探索直线平行的条件
※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行。
三.平行线的特征
※平行线的特征即平行线的性质定理,共有三条:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
四.用尺规作线段和角※
1.关于尺规作图
尺规作图是指只用圆规和没有刻度的直尺来作图。
※2.关于尺规的功能
直尺的功能是:在两点间连接一条线段;将线段向两方向延长。
圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。
初一的数学知识点总结 7
平方根:
①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的`平方根运算,叫做开平方,其中A叫做被开方数。
立方根:
①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:
①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
初一的数学知识点总结 8
一、有理数
概念、定义:
1、大于0的数叫做正数(positive number)。
2、在正数前面加上负号“—”的数叫做负数(negative number)。
3、整数和分数统称为有理数(rational number)。
4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
5、在直线上任取一个点表示数0,这个点叫做原点(origin)。
6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8、正数大于0,0大于负数,正数大于负数。
9、两个负数,绝对值大的反而小。
10、有理数加法法则
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13、有理数减法法则
减去一个数,等于加上这个数的相反数。
14、有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
15、有理数中仍然有:乘积是1的两个数互为倒数。
16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19、有理数除法法则
除以一个不等于0的数,等于乘这个数的倒数。
20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an中,a叫做底数(basenumber),n叫做指数(exponeht)
22、根据有理数的乘法法则可以得出
负数的奇次幂是负数,负数的偶次幂是正数。
显然,正数的任何次幂都是正数,0的任何次幂都是0。
23、做有理数混合运算时,应注意以下运算顺序:
(1)先乘方,再乘除,最后加减;
(2)同级运算,从左到右进行;
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
24、把一个大于10数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。
25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)
注:黑体字为重要部分
二、整式的加减
概念、定义:
1、都是数或字母的.积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。
2、单项式中的数字因数叫做这个单项式的系数(coefficient)。
3、一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a monomial)。
4、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantlyterm)。
5、多项式里次数最高项的次数,叫做这个多项式的次数(degree of a polynomial)。
6、把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
三、一元一次方程
概念、定义:
1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。
2、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear equation withone unknown)。
3、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
4、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
5、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
6、把等式一边的某项变号后移到另一边,叫做移项。
7、应用:行程问题:s=v×t工程问题:工作总量=工作效率×时间
盈亏问题:利润=售价—成本利率=利润÷成本×100%
售价=标价×折扣数×10%储蓄利润问题:利息=本金×利率×时间
本息和=本金+利息
四、图形初步认识
概念、定义:
1、我们把实物中抽象的各种图形统称为几何图形(geometric figure)。
2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure)。
3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure)。
4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net)。
5、几何体简称为体(solid)。
6、包围着体的是面(surface),面有平的面和曲的面两种。
7、面与面相交的地方形成线(line),线和线相交的地方是点(point)。
8、点动成面,面动成线,线动成体。
9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。
简述为:两点确定一条直线(公理)。
10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection)。
11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center)。
12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。简单说成:两点之间,线段最短。(公理)
13、连接两点间的线段的长度,叫做这两点的距离(distance)。
14、角∠(angle)也是一种基本的几何图形。
15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。
16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angular bisector)。
17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementary
angle),即其中的每一个角是另一个角的余角。
18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementary
angle),即其中一个角是另一个角的补角
19、等角的补角相等,等角的余角相等。
初一的数学知识点总结 9
第五章《相交线与平行线》
一、知识点
5.1相交线5.1.1相交线
有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。
两条直线相交有4对邻补角。
有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。
5.1.2两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
注意:⑴垂线是一条直线。
⑵具有垂直关系的两条直线所成的4个角都是90。
⑶垂直是相交的特殊情况。
⑷垂直的记法:a⊥b,AB⊥CD。
画已知直线的垂线有无数条。
过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
5.2平行线5.2.1平行线
在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。在同一平面内两条直线的关系只有两种:相交或平行。
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。5.2.2直线平行的条件
两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。
两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。判定两条直线平行的方法:
方法1两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。
方法2两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。
方法3两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。
5.3平行线的性质
平行线具有性质:
性质1两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。判断一件事情的语句叫做命题。5.4平移
⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。
图形的这种移动,叫做平移变换,简称平移。
第六章《平面直角坐标系》
一、知识点
6.1平面直角坐标系
6.1.1有序数对
有顺序的两个数a与b组成的数对,叫做有序数对。
6.1.2平面直角坐标系
平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
平面上的任意一点都可以用一个有序数对来表示。
建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。
6.2坐标方法的简单应用
6.2.1用坐标表示地理位置
利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:
⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;
⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。6.2.2用坐标表示平移
在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。
第七章《三角形》
一、知识点
7.1与三角形有关的线段
7.1.1三角形的边
由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的'角。
顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。三角形两边的和大于第三边。7.1.2三角形的高、中线和角平分线7.1.3三角形的稳定性
三角形具有稳定性。7.2与三角形有关的角7.2.1三角形的内角
三角形的内角和等于180。
7.2.2三角形的外角
三角形的一边与另一边的延长线组成的角,叫做三角形的外角。三角形的一个外角等于与它不相邻的两个内角的和。三角形的一个外角大于与它不相邻的任何一个内角。
7.3多边形及其内角和7.3.1多边形
在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。n边形的对角线公式:
n(n-3)2各个角都相等,各条边都相等的多边形叫做正多边形。
7.3.2多边形的内角和
n边形的内角和公式:180(n-2)多边形的外角和等于360。
7.4课题学习镶嵌
1三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。☆2判断三条线段能否组成三角形。
①a+b>c(ab为最短的两条线段)②a-b
a-b 进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。 两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。 第九章《不等式与不等式组》 一、知识点 9.1不等式 9.1.1不等式及其解集 用“<”或“>”号表示大小关系的式子叫做不等式。使不等式成立的未知数的值叫做不等式的解。 能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集。含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。 9.1.2不等式的性质 不等式有以下性质: 不等式的性质1不等式两边加(或减)同一个数(或式子),不等号的方向不变。不等式的性质2不等式两边乘(或除以)同一个正数,不等号的方向不变。不等式的性质3不等式两边乘(或除以)同一个负数,不等号的方向改变。9.2实际问题与一元一次不等式 解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a(或x>a)的形式。 9.3一元一次不等式组 把两个不等式合起来,就组成了一个一元一次不等式组。 几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。解不等式就是求它的解集。 对于具有多种不等关系的问题,可通过不等式组解决。解一元一次不等式组时。一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集。9.4课题学习利用不等关系分析比赛 第一章丰富的图形世界 1、几何图形 从实物中抽象出来的各种图形,包括立体图形和平面图形。 2、点、线、面、体 (1)几何图形的组成 点:线和线相交的地方是点,它是几何图形中最基本的图形。 线:面和面相交的地方是线,分为直线和曲线。 面:包围着体的是面,分为平面和曲面。 体:几何体也简称体。 (2)点动成线,线动成面,面动成体。 3、生活中的立体图形 生活中的立体图形 柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、…… 第二章数值 1、理数 正有理数整数 有理数零有理数 负有理数分数 2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零。 3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。 4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和—1。零没有倒数。 5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=—a,则a≤0。 正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。互为相反数的两个数的绝对值相等。 6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。 7、有理数的运算: (1)五种运算:加、减、乘、除、乘方 多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。 有理数加法法则: 同号两数相加,取相同的符号,并把绝对值相加。 异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。 一个数同0相加,仍得这个数。 互为相反数的两个数相加和为0。 有理数减法法则:减去一个数,等于加上这个数的相反数! 有理数乘法法则: 两数相乘,同号得正,异号得负,并把绝对值相乘。 任何数与0相乘,积仍为0。 有理数除法法则: 两个有理数相除,同号得正,异号得负,并把绝对值相除。 0除以任何非0的数都得0。 注意:0不能作除数。 有理数的乘方:求n个相同因数a的积的运算叫做乘方。 正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。 (2)有理数的运算顺序 先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。 (3)运算律 加法交换律加法结合律 乘法交换律乘法结合律 乘法对加法的分配律 8、科学记数法 一般地,一个大于10的数可以表示成的形式,其中,n是正整数,这种记数方法叫做科学记数法。(n=整数位数—1) 第三章整式及其加减 1、代数式 用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。 注意:①代数式中除了含有数、字母和运算符号外,还可以有括号; ②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式; ③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。 代数式的书写格式: ①代数式中出现乘号,通常省略不写,如vt; ②数字与字母相乘时,数字应写在字母前面,如4a; ③带分数与字母相乘时,应先把带分数化成假分数,如应写作; ④数字与数字相乘,一般仍用“×”号,即“×”号不省略; ⑤在代数式中出现除法运算时,一般写成分数的形式,如4÷(a—4)应写作;注意:分数线具有“÷”号和括号的双重作用。 ⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米。 2、整式:单项式和多项式统称为整式。 ①单项式:都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。 注意:1。单独的一个数或一个字母也是单项式;2。单独一个非零数的次数是0;3。当单项式的系数为1或—1时,这个“1”应省略不写,如—ab的系数是—1,a3b的系数是1。 ②多项式:几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。 3、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。 注意:①同类项有两个条件:a。所含字母相同;b。相同字母的指数也相同。 ②同类项与系数无关,与字母的排列顺序无关; ③几个常数项也是同类项。 4、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。 5、去括号法则 ①根据去括号法则去括号: 括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。 ②根据分配律去括号: 括号前面是“+”号看成+1,括号前面是“—”号看成—1,根据乘法的分配律用+1或—1去乘括号里的每一项以达到去括号的目的。 6、添括号法则 添“+”号和括号,添到括号里的各项符号都不改变;添“—”号和括号,添到括号里的各项符号都要改变。 7、整式的运算: 整式的加减法:(1)去括号;(2)合并同类项。 第四章基本平面图形 2、直线的性质 (1)直线公理:经过两个点有且只有一条直线。(两点确定一条直线。) (2)过一点的直线有无数条。 (3)直线是是向两方面无限延伸的.,无端点,不可度量,不能比较大小。 3、线段的性质 (1)线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。) (2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。 (3)线段的大小关系和它们的长度的大小关系是一致的。 4、线段的中点: 点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB(或AB=2AM=2BM)。 5、角: 有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。 6、角的表示 角的表示方法有以下四种: ①用数字表示单独的角,如∠1,∠2,∠3等。 ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。 ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。 ④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。 注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。 7、角的度量 角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。 把1°的角60等分,每一份叫做1分的角,1分记作“1’”。 把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。 1°=60’,1’=60” 8、角的平分线 从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 9、角的性质 (1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。 (2)角的大小可以度量,可以比较,角可以参与运算。 10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。 11、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。 从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n—3)条对角线,把这个n边形分割成(n—2)个三角形。 12、圆:平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。 圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。顶点在圆心的角叫做圆心角。 第五章一元一次方程 1、方程 含有未知数的等式叫做方程。 2、方程的解 能使方程左右两边相等的未知数的值叫做方程的解。 3、等式的性质 (1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。 (2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。 4、一元一次方程 只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。 5、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项。 6、解一元一次方程的一般步骤: (1)去分母(2)去括号(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)(4)合并同类项(5)将未知数的系数化为1 第六章数据的收集与整理 1、普查与抽样调查 为了特定目的对全部考察对象进行的全面调查,叫做普查。其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。 从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。 2、扇形统计图 扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1) 圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°) 3、频数直方图 频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。 4、各种统计图的特点 条形统计图:能清楚地表示出每个项目的具体数目。 折线统计图:能清楚地反映事物的变化情况。 扇形统计图:能清楚地表示出各部分在总体中所占的百分比。 第一章整式的运算 一、单项式、单项式的次数: 只含有数字与字母的积的代数式叫做单项式。单独的一个数或一个字母也是单项式。一个单项式中,所有字母的指数的和叫做这个单项式的次数。 二、多项式 多项式、多项式的次数、项几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。 三、整式:单项式和多项式统称为整式。 四、整式的加减法: 整式加减法的一般步骤: (1)去括号; (2)合并同类项。 五、幂的运算性质: 1、同底数幂的乘法:a 2、幂的乘方: 3、积的乘方: 4、同底数幂的除法: 六、零指数幂和负整数指数幂: 1、零指数幂: 2、负整数指数幂: 七、整式的乘除法: 1、单项式乘以单项式: 法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。 2、单项式乘以多项式: 法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。 3、多项式乘以多项式: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。 4、单项式除以单项式: 单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。 5、多项式除以单项式: 多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。 八、整式乘法公式: 1、平方差公式:2、完全平方公式: 第二章平行线与相交线 一、余角和补角: 1、余角: 定义:如果两个角的和是直角,那么称这两个角互为余角。 性质:同角或等角的余角相等。 2、补角: 定义:如果两个角的和是平角,那么称这两个角互为补角。 性质:同角或等角的补角相等。 二、对顶角: 我们把两条直线相交所构成的四个角中,有公共顶点且角的两边互为反向延长线的两个角叫做对顶角。 对顶角的性质:对顶角相等。 三、同位角、内错角、同旁内角: 直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。 四、平行线的判定: 1、两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。 2、两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。 3、两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。 补充平行线的判定方法: (1)平行于同一条直线的两直线平行。 (2)在同一平面内,垂直于同一条直线的两直线平行。 (3)平行线的定义。 五、平行线的性质: (1)两直线平行,同位角相等。 (2)两直线平行,内错角相等。 (3)两直线平行,同旁内角互补。 六、尺规作图: 1、作一条线段等于已知线段。 2、作一个角等于已知角。 第三章生活中的数据 一、科学记数法: 一般地,一个绝对值较小的数可以表示成a10的形式,其中1a10,n是负整数。 二、近似数和有效数字: 1、近似数: 利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。 2、有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个近似数的有效数字。 三、形象统计图: 第四章概率 一、事件发生的可能性; 人们通常用1(或100)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。 二、游戏是否公平: 游戏对双方公平是指双方获胜的可能性相同。 三、摸到红球的概率: 1、概率的意义 P(摸到红球= 摸到红球可能出现的结果数 摸出一球可能出现的结果数2、确定事件和不确定事件的概率: (1)必然事件发生的概率为1记作P(必然事件)=1(2)不可能事件发生的概率为0,P(不可能事件)=0(3)如果A为不确定事件,那么0 (2)三角形按角分类: 直角三角形(有一个角为直角的三角形) 三角形锐角三角形(三个角都是锐角的三角形)斜三角形 钝角三角形(有一个角为钝角的三角形) 把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。 7、三角形的三种重要线段:(1)三角形的角平分线: 定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。 性质:三角形的三条角平分线交于一点。交点在三角形的内部。(2)三角形的中线: 定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。性质:三角形的三条中线交于一点,交点在三角形的内部。(3)三角形的`高线: 定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。 性质:三角形的三条高所在的直线交于一点。锐角三角形的三条高线的交点在它的内部;直角三角形的三条高线的交点是它的斜边的中点;钝角三角形的三条高所在的直线的交点在它的外部; 8、三角形的面积: 三角形的面积= 1×底×高2二、全等图形: 定义:能够完全重合的两个图形叫做全等图形。性质:全等图形的形状和大小都相同。三、全等三角形 1、全等三角形及有关概念: 能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。 2、全等三角形的表示: 全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3、全等三角形的性质:全等三角形的对应边相等,对应角相等。4、三角形全等的判定: (1)边边边:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。 (2)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)(4)边角边:两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)直角三角形全等的判定: 对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”) 第六章变量之间的关系 1、变量、自变量、因变量:2、函数的三种表示法: (1)关系式法(2)列表法 (3)图像法 第五章生活中的轴对称 一、轴对称 1、轴对称图形: 如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。 2、轴对称: 对于两个图形,如果沿一条直线对折后,它们能够完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。 3、性质: (1)对应点所连的线段被对称轴垂直平分 (2)对应线段相等,对应角相等。 二、角平分线的性质: 角平分线上的点到这个角的两边的距离相等。 三、线段的垂直平分线(简称中垂线): 定义:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。性质:线段垂直平分线上的点到这条线段两个端点的距离相等。四、等腰三角形 1、等腰三角形:有两条边相等的三角形叫做等腰三角形。 2、等腰三角形的性质: (1)等腰三角形的两个底角相等 (2)等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”), (3)等腰三角形是轴对称图形,等腰三角形顶角的平分线、底边上的中线、底边上的高它们所在的直线都是等腰三角形的对称轴。 3、等腰三角形的判定: (1)有两条边相等的三角形是等腰三角形。 (2)如果一个三角形有两个角相等,那么它们所对的边也相等五、等边三角形: 1、等边三角形:三边都相等的三角形叫做等边三角形。2、等边三角形的性质: (1)具有等腰三角形的所有性质。 (2)等边三角形的各个角都相等,并且每个角都等于60°。 3、等边三角形的判定 (1)三边都相等的三角形是等边三角形。 (2):三个角都相等的三角形是等边三角形 (3):有一个角是60°的等腰三角形是等边三角形。 1、相反数 只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。 注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负; ⑶0的相反数是它本身;相反数为本身的数是0。 2、相反数的性质与判定 ⑴任何数都有相反数,且只有一个; ⑵0的相反数是0; ⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0 3、相反数的几何意义 在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的.对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。说明:在数轴上,表示互为相反数的两个点关于原点对称。 4、相反数的求法 ⑴求一个数的相反数,只要在它的前面添上负号“—”即可求得(如:5的相反数是—5); ⑵求多个数的和或差的相反数时,要用括号括起来再添“—”,然后化简(如;5a+b的相反数是—(5a+b)。化简得—5a—b); ⑶求前面带“—”的单个数,也应先用括号括起来再添“—”,然后化简(如:—5的相反数是—(—5),化简得5) 5、相反数的表示方法 ⑴一般地,数a的相反数是—a,其中a是任意有理数,可以是正数、负数或0。 当a>0时,—a<0(正数的相反数是负数) 当a<0时,—a>0(负数的相反数是正数) 当a=0时,—a=0,(0的相反数是0) 代数式中的一种有理式:不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。(分母中含有字母有除法运算的,那么式子叫做分式) 1、单项式:数或字母的积(如5n),单个的数或字母也是单项式。 (1)单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。(如果一个单项式,只含有数字因数,系数是它本身,次数是0)。 (2)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的`次数(非零常数的次数为0)。 2、多项式 (1)概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。 (2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。 (3)多项式的排列: 把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。 在做多项式的排列的题时注意: (1)由于单项式的项包括它前面的性质符号,因此在排列时,仍需把每一项的性质符 看作是这一项的一部分,一起移动。 (2)有两个或两个以上字母的多项式,排列时,要注意: a、先确认按照哪个字母的指数来排列。 b、确定按这个字母降幂排列,还是升幂排列。 3、整式:单项式和多项式统称为整式。 4、列代数式的几个注意事项 (1)数与字母相乘,或字母与字母相乘通常使用“· ”乘,或省略不写; (2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号; (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a; (4)带分数与字母相乘时,要把带分数改成假分数形式; (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成3/a的形式; (6)a与b的差写作a—b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a—b和b—a 。 第一章有理数 1、大于0的数是正数。 2、有理数分类:正有理数、0、负有理数。 3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数) 4、规定了原点,单位长度,正方向的直线称为数轴。 5、数的大小比较: ①正数大于0,0大于负数,正数大于负数。 ②两个负数比较,绝对值大的反而小。 6、只有符号不同的两个数称互为相反数。 7、若a+b=0,则a,b互为相反数 8、表示数a的点到原点的距离称为数a的绝对值 9、绝对值的三句:正数的绝对值是它本身, 负数的绝对值是它的相反数,0的绝对值是0。 10、有理数的计算:先算符号、再算数值。 11、加减: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О) 12、乘除:同号得正,异号的负 13、乘方:表示n个相同因数的乘积。 14、负数的奇次幂是负数,负数的偶次幂是正数。 15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。 16、科学计数法:用ax10n 表示一个数。(其中a是整数数位只有一位的数) 17、左边第一个非零的数字起,所有的数字都是有效数字。 【知识梳理】 1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。 2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。 3.倒数:若两个数的积等于1,则这两个数互为倒数。 4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0; 几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离. 5.科学记数法:,其中。 6.实数大小的比较:利用法则比较大小;利用数轴比较大小。 7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。 一元一次方程知识点 知识点1:等式的概念:用等号表示相等关系的式子叫做等式. 知识点2:方程的概念:含有未知数的等式叫方程,方程中一定含有未知数,而且必须是等式,二者缺一不可. 说明:代数式不含等号,方程是用等号把代数式连接而成的式子,且其中一定要含有未知数. 知识点3:一元一次方程的概念:只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程.任何形式的一元一次方程,经变形后,总能变成形为ax=b(a≠0,a、b为已知数)的形式,这种形式的方程叫一元一次方程的一般式.注意a≠0这个重要条件,它也是判断方程是否是一元一次方程的重要依据. 例2:如果(a+1) +45=0是一元一次方程,则a________,b________. 分析:一元一次方程需要满足的条件:未知数系数不等于0,次数为1. ∴a+1≠0,2b-1=1.∴a≠-1,b=1. 知识点4:等式的基本性质(1)等式两边加上(或减去)同一个数或同一个代数式,所得的结果仍是等式.即若a=b,则a±m=b±m. (2) 等式两边乘以(或除以)同一个不为0的数或代数式, 所得的结果仍是等式. 即若a=b,则am=bm.或. 此外等式还有其它性质: 若a=b,则b=a.若a=b,b=c,则a=c. 说明:等式的性质是解方程的重要依据. 例3:下列变形正确的是( ) A.如果ax=bx,那么a=b B.如果(a+1)x=a+1, 那么x=1 C.如果x=y,则x-5=5-y D.如果则 分析:利用等式的性质解题.应选D. 说明:等式两边不可能同时除以为零的数或式,这一点务必要引起同学们的高度重视. 知识点5:方程的解与解方程:使方程两边相等的未知数的值叫做方程的解,求方程解的过程叫解方程. 知识点6:关于移项:⑴移项实质是等式的基本性质1的运用. ⑵移项时,一定记住要改变所移项的符号. 知识点7:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、将未知数的系数化为1.具体解题时,有些步骤可能用不上,有些步骤可以颠倒顺序,有些步骤可以合写,以简化运算,要根据方程的特点灵活运用. 例4:解方程 . 分析:灵活运用一元一次方程的步骤解答本题. 解答:去分母,得9x-6=2x,移项,得9x-2x=6,合并同类项,得7x=6,系数化为1,得x=. 说明:去分母时,易漏乘方程左、右两边代数式中的某些项,如本题易错解为:去分母得9x-1=2x,漏乘了常数项. 知识点8:方程的检验 检验某数是否为原方程的解,应将该数分别代入原方程左边和右边,看两边的值是否相等. 注意:应代入原方程的左、右两边分别计算,不能代入变形后的方程的左边和右边. 三、一元一次方程的应用 一元一次方程在实际生活中的应用,是很多同学在学习一元一次方程过程中遇到的`一个棘手问题.下面是对一元一次方程在实际生活中的应用的一个专题介绍,希望能为同学们的学习提供帮助. 一、行程问题 行程问题的基本关系:路程=速度×时间, 速度=,时间=. 1.相遇问题:速度和×相遇时间=路程和 例1甲、乙二人分别从A、B两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问甲、乙二人经过多长时间能相遇? 解:设甲、乙二人t分钟后能相遇,则 (200+300)× t =1000, t=2. 答:甲、乙二人2钟后能相遇. 2.追赶问题:速度差×追赶时间=追赶距离 例2甲、乙二人分别从A、B两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问几分钟后乙能追上甲? 解:设t分钟后,乙能追上甲,则 (300-200)t=1000, t=10. 答:10分钟后乙能追上甲. 3. 航行问题:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度. 例3甲乘小船从A地顺流到B地用了3小时,已知A、B两地相距90千米.水流速度是20千米/小时,求小船在静水中的速度. 解:设小船在静水中的速度为v,则有 (v+20)×3=90, v=10(千米/小时). 答:小船在静水中的速度是10千米/小时. 二、工程问题 工程问题的基本关系:①工作量=工作效率×工作时间,工作效率=,工作时间=;②常把工作量看作单位1. 例4已知甲、乙二人合作一项工程,甲25天独立完成,乙20天独立完成,甲、乙二人合作5天后,甲另有事,乙再单独做几天才能完成? 解:设甲再单独做x天才能完成,有 (+)×5+=1, x=11. 答:乙再单独做11天才能完成. 三、环行问题 环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长.同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长. 例5王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人如从同地同时同向而行,经过几分钟二人相遇? 解:设经过t分钟二人相遇,则 (300-200)t=400, t=4. 答:经过4分钟二人相遇. 四、数字问题 数字问题的基本关系:数字和数是不同的,同一个数字在不同数位上,表示的数值不同. 例6一个两位数,个位数字比十位数字小1,这个两位数的个位十位互换后,它们的和是33,求这个两位数. 解:设原两位数的个位数字是x,则十位数字为x+1,根据题意,得 [10(x-1)+x]+[10x+(x+1)]=33, x=1,则x+1=2. ∴这个数是21. 答:这个两位数是21. 五、利润问题 利润问题的基本关系:①获利=售价-进价②打几折就是原价的十分之几 例7某商场按定价销售某种电器时,每台获利48元,按定价的9折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等,该电器每台进价、定价各是多少元? 解:设该电器每台的进价为x元,则定价为(48+x)元,根据题意,得 6[0.9(48+x)-x]=9[(48+x)-30-x] , x=162. 48+x=48+162=210. 答:该电器每台进价、定价各分别是162元、210元. 六、浓度问题 浓度问题的基本关系:溶液浓度=,溶液质量=溶质质量+溶剂质量,溶质质量=溶液质量×溶液浓度 例8用“84”消毒液配制药液对白色衣物进行消毒,要求按1∶200的比例进行稀释.现要配制此种药液4020克,则需要“84”消毒液多少克? 解:设需要“84”消毒液x克,根据题意得 =, x=20. 答:需要“84”消毒液20克. 七、等积变形问题 例1用直径为90mm的圆柱形玻璃杯(已装满水,且水足够多)向一个内底面积为131×131mm2,内高为81mm的长方体铁盒倒水,当铁盒装满水时,玻璃杯中水的高度下降了多少?(结果保留π) 第9 / 11页 分析:玻璃杯里倒掉的水的体积和长方体铁盒里所装的水的体积相等,所以等量关系为: 玻璃杯里倒掉的水的体积=长方体铁盒的容积. 解:设玻璃杯中水的高度下降了xmm,根据题意,得 经检验,它符合题意. 八、利息问题 例2储户到银行存款,一段时间后,银行要向储户支付存款利息,同时银行还将代扣由储户向国家缴纳的利息税,税率为利息的20%. (1)将8500元钱以一年期的定期储蓄存入银行,年利率为2.2%,到期支取时可得到利息________元.扣除利息税后实得________元. (2)小明的父亲将一笔资金按一年期的定期储蓄存入银行,年利率为2.2%,到期支取时,扣除所得税后得本金和利息共计71232元,问这笔资金是多少元? (3)王红的爸爸把一笔钱按三年期的定期储蓄存入银行,假设年利率为3%,到期支取时扣除所得税后实得利息为432元,问王红的爸爸存入银行的本金是多少? 分析:利息=本金×利率×期数,存几年,期数就是几,另外,还要注意,实得利息=利息-利息税. 解:(1)利息=本金×利率×期数=8500×2.2%×1=187元. 实得利息 =利息×(1-20%)=187×0.8=149.6元. (2)设这笔资金为x元,依题意,有x(1+2.2%×0.8)=71232. 解方程,得x=70000. 经检验,符合题意. 答:这笔资金为70000元. (3)设这笔资金为x元,依题意,得x×3×3%×(1-20%)=432. 解方程,得x=6000. 经检验,符合题意. 答:这笔资金为6000元. 整式的加减 1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式. 2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数. 3.多项式:几个单项式的和叫多项式. 4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式. 5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式. 整式 1.整式:单项式和多项式的统称叫整式。 2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。 3.系数;一个单项式中,数字因数叫做这个单项式的系数。 4、次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。 5.多项式:几个单项式的和叫做多项式。 6.项:组成多项式的每个单项式叫做多项式的项。 7.常数项:不含字母的项叫做常数项。 8.多项式的次数:多项式中,次数的项的次数叫做这个多项式的次数。 9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。 10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。 相交线 1、定义:两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 2、注意: ⑴垂线是一条直线。 ⑵具有垂直关系的两条直线所成的4个角都是90。 ⑶垂直是相交的特殊情况。 ⑷垂直的记法:a⊥b,AB⊥CD。 3、画已知直线的垂线有无数条。 4、过一点有且只有一条直线与已知直线垂直。 5、连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。 6、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 7、有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。 两条直线相交有4对邻补角。 8、有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。 单项式 1、都是数字与字母的乘积的代数式叫做单项式。 2、单项式的数字因数叫做单项式的系数。 3、单项式中所有字母的指数和叫做单项式的次数。 4、单独一个数或一个字母也是单项式。 5、只含有字母因式的单项式的系数是1或―1。 6、单独的一个数字是单项式,它的系数是它本身。 7、单独的一个非零常数的次数是0。 8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。 9、单项式的系数包括它前面的符号。 10、单项式的系数是带分数时,应化成假分数。 11、单项式的系数是1或―1时,通常省略数字“1”。 12、单项式的次数仅与字母有关,与单项式的系数无关。 数学最常用且非常实用的学习方法 1、预习很重要: 往往被忽略,理由:没时间,看不懂,不必要等。预习是学习的必要过程,还是提高自学能力的好方法。 2、听讲有学问: 听分析、听思路、听应用,关键内容一字不漏,注意记录。 3、做好错题本: 每个会学习的学生都会有。最好再加个“好题本”。发现许多同学没有错题本,或者是只做不用。这样学习效果都不好。 4、用好课外书: 正确认识网络课程和课外书籍,是副食,是帮助吸收的良药,绝对不是课堂学习的替代品。 5、注意总结和反思: 知识点、解题方法和技巧、经验和教训。 6、接受数学思想方法的指导: 要注意数学思想和方法的指导,站得高,才能看得远。 关于数学常见误区有哪些 1、被动学习 许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。 2、学不得法 老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。 3、不重视基础 一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。 4、进一步学习条件不具备 高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。 如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。 如何整理数学学科课堂笔记 一、内容提纲。老师讲课大多有提纲,并且讲课时老师会将一堂课的线索脉络、重点难点等,简明清晰地呈现在黑板上。同时,教师会使之富有条理性和直观性。记下这些内容提纲,便于课后复习回顾,整体把握知识框架,对所学知识做到胸有成竹、清晰完整。 二、疑难问题。将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。教师在组织课堂教学时,受到时空的限制,不可能做到顾及每一位同学。相应的.,一些问题对部分学生来说,是属于疑难问题,由于课堂上来不及思考成熟,记下疑难问题,可在课后继续加以思考和探究,加以理解和掌握,不致出现知识的断层、方法的缺陷。 三、思路方法。对老师在课堂上介绍的解题方法和分析思路也应及时记下,课后加以消化,若有疑惑,先作独立分析,因为有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后及时与老师商榷和探讨。勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。在这基础上,若能主动钻研,另辟蹊径,则更难能可贵。 四、归纳总结。注意记下老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找规律,融会贯通课堂内容都很有作用。同时,很多有经验的老师在课后小结时,一方面是承上归纳所学内容,另一方面又是启下布置预习任务或点明后面所要学的内容,做好笔记可以把握学习的主动权,提前作准备,做到目标任务明确。 五、错误反思。学习过程中不可避免地会犯这样或那样的错误,记下自己所犯的错误,并用红笔醒目地加以标注,以警示自己,同时也应注明错误成因,正确思路及方法,在反思中成熟,在反思中提高。 数学常用解题技巧有哪些 第一,应坚持由易到难的做题顺序。近年来高考数学试题的设置是8道选择题、6道填空题、6到大题,通常称为866结构。在实体设置的结构中有三个小高峰,选择题是由易到难,最难的题是第8题。填空题同样是这样设置的。也是第9题容易到第14题最难,大题从第15题到第20题,它们的设置也是这样的。根据这样的试题结构,应先做前面容易的,基础好一点的考生就先做前7个选择,前5个填空、前5个大题,称为是755结构。基础差的就是644,先把自己能做的、会做的拿到手。这是第一点。 第二,审题是关键。把题给看清楚了再动笔答题,看清楚题以后问什么、已知什么、让你做什么,把这些问题搞清楚了,自己制订了一个完整的解题策略,在开始写的时候,这个时候是很快就可以完成的。 第三,属于非智力因素导致想不起来。本来是很简单的题比如说是做到第三题、第四题的时候不是难题,但想不起来了,卡住了,这时候怎么办?虽然是简单题却不会做怎么办?应先跳过去,不是这道题不会做吗?后面还有很多的简单题呢,把后面的题做一做,不要在考场上愣神,先跳过去做其他的题,等稳定下来以后再回过头来看会顿悟,豁然开朗。 第四,做选择题的时候应运用最好的解题方法。因为选择题和填空题都是看结果不看过程,因此在这个过程中都应不择手段,只要是能把正确的结论找到就行。考生常用的方法是直接法,从已知的开始也不看它的四个选项,从头到尾写完了之后一看答案就写上去了。另外就是特质法(音),一些出现字母、特别是不等式,这时候给它赋一个值,代进去这时候速度会比较快,正确地找出结果来。再就是数形结合法。最后实在不行了,就将四个选项代入验证,看看哪个符合就是哪个了。填空题用上述的直接法、特质法、数形结合法三种方法都适合。做大题的时候要特别注意解题步骤,规范答题可以减少失分。简单地说,规范答题就是从上一步的原因到下一步的结论,这是一个必然的过程,让谁写、谁看都是这样的。因为什么所以什么是一个必然的过程,这是规范答题。 1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2.三角形的分类 3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。 4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。 6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 7.高线、中线、角平分线的意义和做法 8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。 9.三角形内角和定理:三角形三个内角的和等于180° 推论1直角三角形的两个锐角互余; 推论2三角形的一个外角等于和它不相邻的两个内角和; 推论3三角形的一个外角大于任何一个和它不相邻的内角; 三角形的内角和是外角和的一半。 10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。 11.三角形外角的性质 (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线; (2)三角形的一个外角等于与它不相邻的两个内角和; (3)三角形的一个外角大于与它不相邻的任一内角; (4)三角形的外角和是360°。 12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 13.多边形的内角:多边形相邻两边组成的角叫做它的.内角。 14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。 15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。 17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。 18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。 19.公式与性质 多边形内角和公式:n边形的内角和等于(n-2)·180° 20.多边形外角和定理: (1)n边形外角和等于n·180°-(n-2)·180°=360° (2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180° 21.多边形对角线的条数: (1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。 (2)n边形共有n(n-3)/2条对角线。 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的`对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ? 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 第一章有理数 1.有理数: (1)凡能写成 q(p,q为整数且p0)形式的数,都是有理数,整数和分数统称有理数.p注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;正整数正整数正有理数正分数整数零 (2)有理数的分类: ①有理数零 ②有理数负整数负整数正分数负有理数分数负分数负分数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; (4)自然数0和正整数;a>0a是正数;a<0a是负数; a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数. 2.数轴: 数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意:a-b+c的相反数是-(a-b+c)=-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; (3)相反数的和为0a+b=0a、b互为相反数.(4)相反数的商为-1. (5)相反数的绝对值相等 4.绝对值: (1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; a(a0)a(a0)a(2)绝对值可表示为:a0(a0)或;a(a0)a(a0)(3) aa1a0; aa1a0; (4)|a|是重要的非负数,即|a|≥0,非负性; 5.有理数比大小: (1)正数永远比0大,负数永远比0小; (2)正数大于一切负数; (3)两个负数比较,绝对值大的反而小; (4)数轴上的两个数,右边的数总比左边的数大; (5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。 6.倒数:乘积为1的两个数互为倒数; 注意:0没有倒数;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数. 等于本身的数汇总: 相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1. 7.有理数加法法则:X|k|b|1.c|o|m (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律: (1)加法的交换律:a+b=b+a; (2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10有理数乘法法则: (1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数与零相乘都得零; (3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。 11.有理数乘法的运算律: (1)乘法的交换律:ab=ba; (2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac.(简便运算) 12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即无意义. 13.有理数乘方的法则: (1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数; 14.乘方的定义: (1)求相同因式积的运算,叫做乘方; (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; (3)a是重要的非负数,即a≥0;若a+|b|=0a=0,b=0; (4)正数的任何次幂都是正数,0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂是正数。 0.120.01211 (5)据规律2底数的小数点移动一位,平方数的小数点移动二位.10100222a0 15.科学记数法:把一个大于10的数记成a×10的形式,其中a是整数数位只有一位的数即1≤a 16.近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数精确到那一位. 17.混合运算法则:先乘方,后乘除,最后加减;注意:不省过程,不跳步骤。 18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。 第二章整式的加减 1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。 2.单项式的系数与次数:单项式中的数字因数,称单项式的系数(要包括前面的符号);单项式中所有字母指数的和,叫单项式的次数(只与字母有关)。 3.多项式:几个单项式的和叫多项式。 4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数; 5.整式单项式多项式(整式是代数式,但是代数式不一定是整式)。 6.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项(与系数无关,与字母的排列顺序无关)。 7.合并同类项法则:系数相加,字母与字母的指数不变. 8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号. 9.整式的加减:一找:(标记);二“+”(务必用+号开始合并)三合:(合并) 10.多项式的升幂和降幂排列:把一个多项式的.各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。 第三章一元一次方程 1.等式:用“=”号连接而成的式子叫等式.2.等式的性质: 等式性质 1:等式两边都加上(或减去)同一个数(或式子),结果仍相等;等式性质 2:等式两边都乘以(或除以)同一个不为零的数,结果仍相等. 3.方程:含未知数的等式,叫方程(方程是含有未知数的等式,但等式不一定是方程). 4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”。 5.移项:把等式一边的某项变号后移到另一边叫移项.移项的依据是等式性质1(移项变号). 6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程. 7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0). 8.一元一次方程解法的一般步骤:化简方程----------分数基本性质 去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号(留下靠前) 合并同类项--------合并后符号系数化为1---------除前面 9.列一元一次方程解应用题: (1)读题分析法:多用于“和,差,倍,分问题” 仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程. (2)画图分析法:多用于“行程问题” 利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础. 10.列方程解应用题的常用公式: (1)行程问题:路程=速度时间速度路程路程时间;时间速度工作量工作量工时;工时工效 (2)工程问题:工作量=工作效率工作时间工效工程问题常用等量关系:先做的+后做的=完成量 (3)顺水逆水问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;顺水逆水问题常用等量关系:顺水路程=逆水路程 (4)商品利润问题:售价=定价几折售价成本,利润率100%;成本10利润问题常用等量关系:售价-进价=利润 (5)配套问题: (6)分配问题 第四章图形初步认识 (一)多姿多彩的图形 立体图形:棱柱、棱锥、圆柱、圆锥、球等. 1、几何图形平面图形:三角形、四边形、圆、多边形等. 主视图---------从正面看 2、几何体的三视图左视图---------从左边看俯视图---------从上面看 (1)会判断简单物体(棱柱、圆柱、圆锥、球)的三视图. (2)能根据三视图描述基本几何体或实物原型 3、立体图形的平面展开图 (1)同一个立体图形按不同的方式展开,得到的平现图形不一样的 (2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型. 4、点、线、面、体 (1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体. (2)点动成线,线动成面,面动成体. (二)直线、射线、线段 1、基本概念名称直线射线线段aaa图形ABBBAA端点个数表示法作法叙述延长无直线a直线AB(BA)作直线a作直线AB;向两端无限延长一个射线a射线AB作射线a作射线AB向一端无限延长两个线段a线段AB(BA)作线段a;作线段AB;连接AB不可延长 2、直线的性质经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线. 3、画一条线段等于已知线段 (1)度量法 (2)用尺规作图法 4、线段的长短比较方法 (1)度量法 (2)叠合法 (3)圆规截取法 5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形: AMB 符号:若点M是线段AB的中点,则AM=BM= 6、线段的性质 1AB,AB=2AM=2BM. 两点的所有连线中,线段最短.简单地:两点之间,线段最短. 7、两点的距离 连接两点的线段的长度叫做两点的距离(距离是线段的长度,而不是线段本身) 8、点与直线的位置关系 (1)点在直线上(或者直线经过点) (2)点在直线外(或者直线不经过点). (三)角 1、角:有公共端点的两条射线所组成的图形叫做角. 2、角的表示法(四种):表示方法图例记法适用范围A任何情况下都适应。表示端O用三个大写字母表示AOB或BOAB点的字母必须写在中间。以这个点为顶点的角只有用一个大写字母表示AA一个。任何情况下都适用。但必须用数字表示11在靠近顶点处加上弧线表示角的范围,并注上数字或用希腊字母表示希腊字母。 3、角的度量单位及换算(度””、分””、秒””)60进制1=60=3600,1=60;1=(4、角的分类∠β范围锐角直角钝角0<∠β<90°∠β=90°90° 相反数 (1)相反数的概念:只有符号不同的两个数叫做互为相反数. (2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等. (3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正. (4)规律方法总结:求一个数的'相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号. 2代数式求值 (1)代数式的:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值. (2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值. 题型简单总结以下三种: ①已知条件不化简,所给代数式化简; ②已知条件化简,所给代数式不化简; ③已知条件和所给代数式都要化简. 3由三视图判断几何体 (1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状. (2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析: ①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高; ②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线; ③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助; ④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法 数轴知识点 (1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。 数轴的三要素:原点,单位长度,正方向。 (2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数。(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.) (3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。 相反数知识点 (1)相反数的概念:只有符号不同的两个数叫做互为相反数。 (2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。 (3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。 (4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。 三角形中位线定理的作用 位置关系:可以证明两条直线平行。 数量关系:可以证明线段的倍分关系。 常用结论:任一个三角形都有三条中位线,由此有: 结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。 结论2:三条中位线将原三角形分割成四个全等的三角形。 结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。 结论4:三角形一条中线和与它相交的中位线互相平分。 结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。 注意:重要辅助线:⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线。 等腰三角形的性质 (1)等腰三角形的性质定理及推论: 定理:等腰三角形的两个底角相等(简称:等边对等角) 推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。 推论2:等边三角形的各个角都相等,并且每个角都等于60°。 (2)等腰三角形的其他性质: ①等腰直角三角形的两个底角相等且等于45°。 ②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。 ③等腰三角形的三边关系:设腰长为a,底边长为b,则 ④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°-2∠B,∠B=∠C。 三角形全等的判定定理 (1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成"边角边"或"SAS")。 (2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成"角边角"或"ASA")。 (3)边边边定理:有三边对应相等的两个三角形全等(可简写成"边边边"或"SSS")。 直角三角形全等的判定: 对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成"斜边、直角边"或"HL")。 拓展阅读:数学学习方法技巧 做好预习 单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。 认真听课 听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。 认真解题 课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。 及时纠错 课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的.问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。 学会总结 数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。 学会管理 管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。冯老师称,这可是大考复习时最有用的资料,千万不可疏忽。 提高听课质量要培养会听课,听懂课的习惯。注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。 代数 1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式. 2.列代数式的几个注意事项(数学规范): (1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写; (2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号; (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a; (4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a; (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式; (6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a. 3.几个重要的'代数式:(m、n表示整数) (1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2; (2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c; (3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1; (4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2. 有理数 1.有理数: 1凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数; 2有理数的分类:①② 3注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; 4自然数0和正整数;a>0a是正数;a<0a是负数; a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: 1、只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; 2、注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; 3、相反数的和为0a+b=0a、b互为相反数. 解一元一次方程: 1、解一元一次方程的一般步骤 去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。 2、解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。 3、在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。 使方程逐渐转化为ax=b的最简形式体现化归思想。 将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。 14、一元一次方程的应用 1、一元一次方程解应用题的类型 (1)探索规律型问题; (2)数字问题; (3)销售问题(利润=售价﹣进价,利润率=利润进价×100%); (4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量); (5)行程问题(路程=速度×时间); (6)等值变换问题; (7)和,差,倍,分问题; (8)分配问题; (9)比赛积分问题; (10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度)。 2、利用方程解决实际问题的基本思路: 首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的.相等关系列方程、求解、作答,即设、列、解、答。 列一元一次方程解应用题的五个步骤 (1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系。 (2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数。 (3)列:根据等量关系列出方程。 (4)解:解方程,求得未知数的值。 (5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句。 初一数学方法技巧 1、请概括的说一下学习的方法 曰:“像做其他事一样,学习数学要研究方法。我为你们推荐的方法是:超前学习,展开联想,多做总结,找出合情合理。 2、请谈谈超前学习的好处 曰:“首先,超前学习能挖掘出自身的潜力,培养自学能力。经过超前学习,会发现自己能独立解决许多问题,对提高自信心,培养学习兴趣很有帮助。” 其次,够消除对新知识的“隐患”。超前学习能够发现在现有的基础上,自己对新知识认识的不妥之处。相反地,若直接听别人说。似乎自己也能一开始就达到这种理解水平,实践证明,并非这样。 再次,超前学习中的有些内容,当时不能透彻理解,但经过深思之后,即使搁置一边,大脑也会潜意识“加工”。当教师进度进行到这块内容时,我们做第二次理解,会深刻的多。 最后,超前学习能提高听课质量。超前学习以后,我们发现新知识中的多数自己完全可以理解。只有少数地方需借助于别人。这样,在课堂上,我们即能将可以集中注意力的时间放“这少数地方”的理解上,即“好钢用在刀刃上”。事实上,一节课,能集中注意力的时间并不太多。 3、请谈谈联想与总结 曰:联想与总结贯穿与学习过程中的始终。对每一知识的认识,必定要有认识基础。寻找认识基础的过程即是联想,而认识基础的是对以前知识的总结。以前总结的越简洁、清晰、合理,越容易联想。这样就可以把新知识熔进原来的知识结构中为以后的某次联想奠定基础。联想与总结在解题中特别有效。也许你以前并没有这样的认识,但解题能力却很强,这说明你很聪明,你在不自觉中使用这种做法。如果你能很明确的认识这一点,你的能力会更强。 4、那么我们怎样预习呢? 曰:“先说说学习的目标: (1)知道知识产生的背景,弄清知识形成的过程。 (2)或早或晚的知道知识的地位和作用: (3)总结出认识问题的规律(或说出认识问题使用了以前的什么规律)。 再说具体的做法: (1)对概念的理解。数学具有高度的抽象性。通常要借助具体的东西加以理解。有时借助字面的含义:有时借助其他学科知识。有时借助图形……理解概念的境界是意会。一定要在理解概念上下一番苦功夫后再做题。 (2)对公式定理的预习,公式定理是使用最多的“规律”的总结。如:完全平方公式,勾股定理等。往往公式的推导定理的证明蕴含着丰富的数学方法及相当有用的解题规律。如三角形内角平分线定理的证明。我们应当先自己推导公式或证明定理,若做不成再参考别人的做法。无论是自己完成的,还是看别人的,都要说出这样做是怎样想出来的。 (3)对于例题及习题的处理见上面的(2)及下面的第五条。 1.同一平面内,两直线不平行就相交。 2.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互 为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。 3.垂直定义:两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其 中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。4.垂直三要素:垂直关系,垂直记号,垂足 5.垂直公理:过一点有且只有一条直线与已知直线垂直。6.垂线段最短; 7.点到直线的距离:直线外一点到这条直线的垂线段的长度。8.两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧),内错角Z(在 两条直线内部,位于第三条直线两侧),同旁内角U(在两条直线内部,位于第三条直线同侧)。9.平行公理:过直线外一点有且只有一条直线与已知直线平行。 10.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//cP174题 11.平行线的判定。结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。平行线的性质: 1.两直线平行,同位角相等。2.两直线平行,内错角相等。3.两直线平行,同旁内角互补。 12.★命题:“如果+题设,那么+结论。” 三角形和多边形 1.三角形内角和为180° 2.构成三角形满足的条件:三角形两边之和大于第三边。 判断方法:在△ABC中,a、b为两短边,c为长边,如果a+b>c则能构成三角形,否则(a+bc)不能构成三角形(即三角形最短的两边之和大于最长的边) 3.三角形边的取值范围:三角形的任一边:小于两边之和,大于两边之差(的绝对值)【重点题目】三角形的两边分别为3和7,则三角形的.第三边的取值范围为4.等面积法:三角形面积1底高,三角形有三条高,也就对应有三条底边,任取其中一组底和高,21三角形同一个面积公式就有三个表示方法,任取其中两个写成连等(可两边同时2消去)底高 2底高,知道其中三条线段就可求出第四条。例如:如图1,在直角△ABC中,ACB=900,CD 是斜边AB 上的高,则有ACBCCDAB A CB1D【重点题目】P708题例直角三角形的三边长分别为3、4、5,则斜边上的高为5.等高法:高相等,底之间具有一定关系(如成比例或相等) 【例】AD是△ABC的中线,AE是△ABD的中线,SABC4cm2,则SABE=6.三角形的特性:三角形具有【重点题目】P695题7.外角: 【基础知识】什么是外角?外角定理及其推论【重点题目】P75例2P765、6、8题8.n边形的★内角和★外角和√对角线条数为 【基础知识】正多边形:各边相等,各角相等;正n边形每个内角的度数为【重点题目】P83、P84练习1,2,3;P843,4,5,6;P904、5题9.√镶嵌:围绕一个拼接点,各图形组成一个周角(不重叠,无空隙)。 单一正多边形的镶嵌:镶嵌图形的每个内角能被360整除:只有6个等边三角形(60),4个正方形(90),3个正六边形(120)三种 (两种正多边形的)混合镶嵌:混合镶嵌公式nm3600:表示n个内角度数为的正多边形与 0000m个内角度数为的正多边形围绕一个拼接点组成一个周角,即混合镶嵌。 【例】用正三角形与正方形铺满地面,设在一个顶点周围有m个正三角形、n个正方形,则m,n的值分别为多少? 平面直角坐标系 ▲基本要求:在平面直角坐标系中1.给出一点,能够写出该点坐标2.给出坐标,能够找到该点 ▲建系原则:原点、正方向、横纵轴名称(即x、y) √语言描述:以…(哪一点)为原点,以…(哪一条直线)为x轴,以…(哪一条直线)为y轴建立直角坐标系 ▲基本概念:有顺序的两个数组成的数对称为(有序数对)【三大规律】1.平移规律★ 点的平移规律(P51归纳) 例将P(2,3)向左平移3个单位,向上平移5个单位得到点Q,则Q点的坐标为图形的平移规律(P52归纳) 重点题目:P53练习;P543、4题;P557题。2.对称规律▲ 关于x轴对称,纵坐标取相反数关于y轴对称,横坐标取相反数 关于原点对称,横、纵坐标同时取相反数 例:P点的坐标为(5,7),则P点 (1.)关于x轴对称的点为(2.)关于y轴的对称点为(3.)关于原点的对称点为3.位置规律★ 假设在平面直角坐标系上有一点P(a,b)y1.如果P点在第一象限,有a>0,b>0(横、纵坐标都大于0)第二象限第一象限2.如果P点在第二象限,有a0(横坐标小于0,纵坐标大于0)X3.如果P点在第三象限,有a5.小长方形的面积表示频数。纵轴为频数。等距分组时,通常直接用小长方形的高表示频数,即纵 组距轴为“频数” 6.频数分布折线图√根据频数分布图画出频数分布折线图:①取每个小长方形的上边的中点,以及x 轴上与最左、最右直方相距半个组距的点。②连线【重点题目】P1693、4题 二元一次方程组和不等式、不等式组 1.解二元一次方程组,基本的思想是;2.二元一次方程(组):含两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程。把具有相同未知数的两个二元一次方程组合起来,就组成了二元一次方程组。(具体题目见本单元测试卷填空部分) 3.★解二元一次方程组。常用的方法有和。P96、P100归纳4.★列二元一次方程组解实际问题。关键:找等量关系常见的类型有:分配问题P1185题;P1084、5题;P102练习3;P1048题;P1034题;追及问题P1037题、P1186题;顺流逆流P102练习2;P1082题;药物配制P1087题;行程问题P99练习4;P1083,6题顺流逆流公式:v顺v静v水v逆vv静水5.不等式的性质(重点是性质三)P1285、7题6.利用不等式的性质解不等式,并把解集在数轴上表示出来(课本上的练例、习题)P1342 步骤:去分母,去括号,移项,合并同类项,系数化为一;其中去分母与系数化为一要特别小心,因为要在不等式两端同时乘或除以某一个数,要考虑不等号的方向是否发生改变的问题。7.用不等式表示,P1282题,P127练习2;P123练习28.利用数轴或口诀解不等式组(课本上的例、习题) 数轴:P140归纳口诀(简单不等式):同大取大,同小取小,大(于)小小(于)大取中间,大(于)大小(于)小,解不见了。 9.列不等式(组)解决实际问题:P12910;P1289题;P133例2;P1355、6、7、8、9,P139例2;P140练习2,P1413、4题不等式组的解集的确定方法(a>b):自己将表格补充完整:不等式组 4 在数轴上表示的解集解集x>a口诀大大取大;x>ax>bx<ax<bx<ax>b小大大小中间找;ba小小取小;x>ax<b空集大大小小不见了。 代数初步知识 1、代数式:用运算符号“+-×÷”连接数及表示数的字母的式子称为代数式、注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式、 2、列代数式的几个注意事项: (1)数与字母相乘,或字母与字母相乘通常使用“”乘,或省略不写; (2)数与数相乘,仍应使用“×”乘,不用“”乘,也不能省略乘号; (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a; (4)带分数与字母相乘时,要把带分数改成假分数形式,如a×112应写成a; 233(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式; a(6)a与b的差写作a-b,要注意字母顺序;若只说两数的'差,当分别设两数为a、b时,则应分类,写做a-b和b-a、 3、几个重要的代数式:(m、n表示整数) (1)a与b的平方差是:a-b;a与b差的平方是:(a-b); (2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c; (3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1; (4)若b>0,则正数是:a+b,负数是:-a-b,非负数是:a,非正数是:-a、2222222 有理数 1、有理数:(1)凡能写成 qp(p,q为整数且p0)形式的数,都是有理数、正整数、0、负整数统称整数;正分数、负分数 统称分数;整数和分数统称有理数、注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数; 正有理数 (2)有理数的分类: ①有理数零负有理数正整数正分数负整数负分数整数 ②有理数分数正整数零负整数正分数负分数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; (4)自然数0和正整数;a>0a是正数;a<0a是负数; 1.a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数、 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线、 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; (3)相反数的和为0a+b=0a、b互为相反数、 4、绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (a0)a(a0)a(2)绝对值可表示为:a0(a0)或a;绝对值的问题经常分类讨论; (一)有理数及其运算 一、有理数的基础知识 1、三个重要的定义: (1)正数:像1、2.5、这样大于0的数叫做正数; (2)负数:在正数前面加上“-”号,表示比0小的数叫做负数; (3)0即不是正数也不是负数. 2、有理数的分类: (1)按定义分类: 正整数整数0负整数有理数正分数分数负分数 (2)按性质符号分类: 正整数正有理数正分数有理数0 负整数负有理数负分数3、数轴 数轴有三要素:原点、正方向、单位长度.画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴.在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数. 4、相反数 如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数.0的相反数是0,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等. 5、绝对值 (1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离 (2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a表示如下: (a0)aa0(a0) a(a0) (3)两个负数比较大小,绝对值大的反而小 二、有理数的运算 1、有理数的加法 (1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数. (2)有理数加法的运算律: 加法的交换律:a+b=b+a;加法的结合律:(a+b)+c=a+(b+c) 用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加。 2、有理数的减法 (1)有理数减法法则:减去一个数等于加上这个数的相反数. (2)有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数. (3)有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算; 3、有理数的乘法 (1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0 (2)有理数乘法的运算律:交换律:ab=ba;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac (3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来. 4、有理数的除法 有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数.这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0. 5、有理数的乘法 (1)有理数的乘法的定义:求几个相同因数a的运算叫做乘方,乘方是一种运算,是几个相同的因数的特殊乘法运算,记做“a”其中a叫做底数,表示相同的因数,n叫做指数,表示相同因数的个数,它所表示的意义是n个a相乘,不是n乘以a,乘方的结果叫做幂. (2)正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数6、有理数的混合运算 (1)进行有理数混合运算的关建是熟练掌握加、减、乘、除、乘方的运算法则、运算律及运算顺序.比较复杂的混合运算,一般可先根据题中的加减运算,把算式分成几段,计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的,同时要注意灵活运用运算律简化运算. (2)进行有理数的混合运算时,应注意:一是要注意运算顺序,先算高一级的运算,再算低一级的运算;二是要注意观察,灵活运用运算律进行简便运算,以提高运算速度及运算能力. (2)整式的加减 1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式. 2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式. n4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式. 5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:. 6.同类项:所含字母相同,并且相同字母的.指数也相同的单项式是同类项 7.合并同类项法则:系数相加,字母与字母的指数不变. 8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“”号,括号里的各项都要变号. 9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列 (3)一元一次方程 一、方程的有关概念 1、方程的概念: (1)含有未知数的等式叫方程. (2)在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的方程叫一元一次方程. 2、等式的基本性质: (1)等式两边同时加上(或减去)同一个代数式,所得结果仍是等式.若a=b,则a+c=b+c或ac=bc (2)等式两边同时乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.若a=b,则ac=bc或 abcc (3)对称性:等式的左右两边交换位置,结果仍是等式.若a=b,则b=a (4)传递性:如果a=b,且b=c,那么a=c,这一性质叫等量代换 二、解方程 1、移项的有关概念: 把方程中的某一项改变符号后,从方程的一边移到另一边,叫做移项.这个法则是根据等式的性质1推出来的,是解方程的依据.要明白移项就是根据解方程变形的需要,把某一项从方程的左边移到右边或从右边移到左边,移动的项一定要变号. 2、解一元一次方程的步骤:(1)去分母等式的性质2 注意拿这个最小公倍数乘遍方程的每一项,切记不可漏乘某一项,分母是小数的,要先利用分数的性质,把分母化为整数,若分子是代数式,则必加括号. (2)去括号去括号法则、乘法分配律 严格执行去括号的法则,若是数乘括号,切记不漏乘括号内的项,减号后去括号,括号内各项的符号一定要变号. (3)移项等式的性质1 越过“=”的叫移项,属移项者必变号;未移项的项不变号,注意不遗漏,移项时把含未知数的项移在左边,已知数移在右边,书写时,先写不移动的项,把移动过来的项改变符号写在后面 (4)合并同类项合并同类项法则注意在合并时,仅将系数加到了一起,而字母及其指数均不改变 (5)系数化为1等式的性质2 两边同除以未知数的系数,记住未知数的系数永远是分母(除数),切不可分子、分母颠倒 (6)检验 二、列方程解应用题 1、列方程解应用题的一般步骤: (1)将实际问题抽象成数学问题; (2)分析问题中的已知量和未知量,找出等量关系; (3)设未知数,列出方程; (4)解方程; (5)检验并作答. 2、一些实际问题中的规律和等量关系: (1)日历上数字排列的规律是:横行每整行排列7个连续的数,竖列中,下面的数比上面的数大7.日历上的数字范围是在1到31之间,不能超出这个范围 (2)几种常用的面积公式: 长方形面积公式:S=ab,a为长,b为宽,S为面积;正方形面积公式:S=a2,a为边长,S为面积; 梯形面积公式:S=1(ab)h,a,b为上下底边长,h为梯形的高,S为梯形面积;22圆形的面积公式:Sr,r为圆的半径,S为圆的面积;三角形面积公式:S1ah,a为三角形的一边长,h为这一边上的高,S为三角形的2面积. (3)几种常用的周长公式:长方形的周长:L=2(a+b),a,b为长方形的长和宽,L为周长.正方形的周长:L=4a,a为正方形的边长,L为周长.圆:L=2πr,r为半径,L为周长 (4)柱体的体积等于底面积乘以高,当体积不变时,底面越大,高度就越低.所以等积变化的相等关系一般为:变形前的体积=变形后的体积. (5)打折销售这类题型的等量关系是:利润=售价成本. (6)行程问题中关建的等量关系:路程=速度×时间,以及由此导出的其化关系. (7)在一些复杂问题中,可以借助表格分析复杂问题中的数量关系,找出若干个较直接的等量关系,借此列出方程,列表可帮助我们分析各量之间的相互关系. (8)在行程问题中,可将题目中的数字语言用“线段图”表达出来,分析问题中的数量关系,从而找出等量关系,列出方程 (9)关于储蓄中的一些概念: 本金:顾客存入银行的钱;利息:银行给顾客的酬金;本息:本金与利息的和;期数:存入的时间;利率:每个期数内利息与本金的比;利息=本金×利率×期数;本息=本金+利息. (4)图形初步认识 (一)多姿多彩的图形 立体图形:棱柱、棱锥、圆柱、圆锥、球等. 1、几何图形 平面图形:三角形、四边形、圆等.主(正)视图从正面看 2、几何体的三视图侧(左、右)视图从左(右)边看 俯视图从上面看 (1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图 (2)能根据三视图描述基本几何体或实物原型 3、立体图形的平面展开图 (1)同一个立体图形按不同的方式展开,得到的平现图形不一样的 (2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型 4、点、线、面、体(1)几何图形的组成 点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体. (2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念 图形直线射线线段端点个数表示法作法叙述无直线a直线AB(BA)作直线AB;作直线a一个射线AB作射线AB反向延长射线AB两个线段a线段AB(BA)作线段a;作线段AB;连接AB延长线段AB;反向延长线段BA延长叙述不能延长2、直线的性质 经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段(1)度量法 (2)用尺规作图法 4、线段的大小比较方法(1)度量法(2)叠合法 5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形: AMB 符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.6、线段的性质 两点的所有连线中,线段最短.简单地:两点之间,线段最短.7、两点的距离连接两点的线段长度叫做两点的距离.8、点与直线的位置关系 (1)点在直线上(2)点在直线外.(三)角 1、角:由公共端点的两条射线所组成的图形叫做角 2、角的表示法(四种): 3、角的度量单位及换算 4、角的分类∠β范围锐角0<∠β<90°直角∠β=90°钝角90° 1、单项式的定义: 由数或字母的积组成的式子叫做单项式。 说明:单独的一个数或者单独的一个字母也是单项式. 2、单项式的系数: 单项式中的数字因数叫这个单项式的系数. 说明:⑴单项式的系数可以是整数,也可能是分数或小数。如3x的系数是3的32 系数是1;4.8a的系数是4.8; 3 ⑵单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号, ?4xy2的系数是4;2x2y的系数是4; ⑶对于只含有字母因数的单项式,其系数是1或-1,不能认为是0,如?ab的 系数是-1;ab的系数是1; ⑷表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。如2πxy的系数就是2. 3、单项式的次数: 一个单项式中,所有字母的指数的和叫做这个单项式的次数. 说明:⑴计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1 的情况。如单项式2xyz的次数是字母z,y,x的指数和,即4+3+1=8, 而不是7次,应注意字母z的指数是1而不是0; ⑵单项式的指数只和字母的.指数有关,与系数的指数无关。 ⑶单项式是一个单独字母时,它的指数是1,如单项式m的指数是1,单项式是单独的一个常数时,一般不讨论它的次数; 4、在含有字母的式子中如果出现乘号,通常将乘号写作“* ”或者省略不写。 5、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数.。 本章重点:一元一次不等式的解法, 本章难点:了解不等式的解集和不等式组的解集的确定,正确运用不等式基本性质3。 本章关键:彻底弄清不等式和等式的基本性质的区别. (1)不等式概念:用不等号(“≠”、“”)表示的不等关系的式子叫做不等式(2)不等式的基本性质,它是解不等式的理论依据. (3)分清不等式的解集和解不等式是两个完全不同的概念.(4)不等式的解一般有无限多个数值,把它们表示在数轴上,(5)一元一次不等式的概念、解法是本章的重点和核心 (6)一元一次不等式的解集,在数轴上表示一元一次不等式的解集 (7)由两个一元一次不等式组成的一元一次不等式组.一元一次不等式组可以由几个(同未知数的)一元一次不等式组成(8).利用数轴确定一元一次不等式组的解集第六章: 1.二元一次方程,二元一次方程组以及它的解,明确二元一次方程组的解是一对未知数的值,会检验一对数值是不是某一个二元一次方程组的解. 2.一次方程组的两种基本解法,能灵活运用代入法,加减法解二元一次方程组及简单的三元一次方程组. 3.根据给出的应用问题,列出相应的二元一次方程组或三元一次方程组,从而求出问题的解,并能根据问题的实际意义,检查结果是否合理.本章的重点是:二元一次方程组的解法代入法,加减法以及列一次方程组解简单的应用问题. 本章的难点是: 1.会用适当的消元方法解二元一次方程组及简单的三元一次方程组;2.正确地找出应用题中的相等关系,列出一次方程组.第七章 本章重点是:整式的乘除运算,特别是对幂的运算及乘法公式的应用要达到熟练程度.本章难点是:对乘法公式结构特征和公式中字母意义的理解及乘法公式的灵活应用1.幂的运算性质,正确地表述这些性质,并能运用它们熟练地进行有关计算. 2.单项式乘以(或除以)单项式,多项式乘以(或除以)单项式,以及多项式乘以多项式的法则,熟练地运用它们进行计算. 3.乘法公式的推导过程,能灵活运用乘法公式进行计算.4.熟练地运用运算律、运算法则进行运算, 5.体会用字母表示数和用字母表示式子的意义.通过式的变形,深入理解转化的思想方法.第八章: 1、认识事物的几种方法:观察与实验归纳与类比猜想与证明生活中的说理数学中的说理 2、定义、命题、公理、定理3、简单几何图形中的`推理4、余角、补交、对顶角5、平行线的判定判定:一个公理两个定理。 公理:两直线被第三条直线所截,如果同位角相等(数量关系)两直线平行(位置关系)定理:内错角相等(数量关系)两直线平行(位置关系)定理:同旁内角互补(数量关系)两直线平行(位置关系).平行线的性质: 两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补 由图形的“位置关系”确定“数量关系”第九章: 重点:因式分解的方法, 难点:分析多项式的特点,选择适合的分解方法1.因式分解的概念; 2.因式分解的方法:提取公因式法、公式法、分组分解法(十字相乘法)3.运用因式分解解决一些实际问题.(包括图形习题)第十章: 重点是:用统计知识解决现实生活中的实际问题.难点是:用统计知识解决实际问题. 1.统计初步的基本知识,平均数、中位数、众数等的计算、2.了解数据的收集与整理、绘画三种统计图. 3.应用统计知识解决实际问题能解决与统计相关的综合问题. 概率 一、事件: 1、事件分为必然事件、不可能事件、不确定事件。 2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。 3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。 4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。 二、等可能性:是指几种事件发生的可能性相等。 1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。 2、必然事件发生的概率为1,记作P(必然事件)=1; 3、不可能事件发生的概率为0,记作P(不可能事件)=0; 4、不确定事件发生的概率在0—1之间,记作0 三、几何概率 1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。 2、求几何概率: (1)首先分析事件所占的面积与总面积的关系; (2)然后计算出各部分的面积; (3)最后代入公式求出几何概率。 初一数学学习方法技巧 1、做好预习: 单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。 2、认真听课: 听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。 3、认真解题: 课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。 4、及时纠错: 课堂练习、作业、检测,反馈后要及时查阅,分析错题的.原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。 5、学会总结: 冯老师说:“数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。 6、学会管理: 管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。冯老师称,这可是大考复习时最有用的资料,千万不可疏忽。 目前初中学生学习数学存在一个严重的问题就是不善于读数学教材,他们往往是死记硬背。重视阅读方法对提高初中学生的学习能力是至关重要的。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细地读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读懂,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。 提高听课质量要培养会听课,听懂课的习惯。注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。 有疑必问是提高学习效率的有效办法学习过程中,遇到疑问,抓紧时间问老师和同学,把没有弄懂,没有学明白的知识,最短的时间内掌握。建立自己的错题本,经常翻阅,提醒自己同样的错误不要犯第二次。从而提高学习效率。 【初一的数学知识点总结】相关文章: 数学初一知识点总结07-03 初一数学下册知识点总结07-11 初一数学知识点总结05-29 数学初一知识点总结(精选19篇)10-29 初一数学下册的知识点总结07-25 初一数学全部知识点总结10-24 初一数学知识点总结09-04 初一数学上册知识点总结01-07 人教版初一数学知识点总结11-03 初一的数学知识点总结 10
初一的数学知识点总结 11
初一的数学知识点总结 12
初一的数学知识点总结 13
初一的数学知识点总结 14
初一的数学知识点总结 15
初一的数学知识点总结 16
初一的数学知识点总结 17
初一的数学知识点总结 18
初一的数学知识点总结 19
初一的数学知识点总结 20
初一的数学知识点总结 21
初一的数学知识点总结 22
初一的数学知识点总结 23
初一的数学知识点总结 24
初一的数学知识点总结 25
初一的数学知识点总结 26
初一的数学知识点总结 27
初一的数学知识点总结 28