- 初中物理实验教学课件 推荐度:
- 相关推荐
初中集合教学课件(通用6篇)
作为一名无私奉献的老师,通常会被要求准备好课件,课件的基本模式有练习型、指导型、咨询型、模拟型、游戏型、问题求解型、发现学习型等。课件应该怎么写呢?下面是小编整理的初中集合教学课件,希望能够帮助到大家。
初中教学课件 1
一、目的要求
1.通过本章的引言,使学生初步了解本章所研究的问题是集合与简易逻辑的有关知识,并认识到用数学解决实际问题离不开集合与逻辑的知识。
2.在小学与初中的基础上,结合实例,初步理解集合的概念,并知道常用数集及其记法。
3.从集合及其元素的概念出发,初步了解属于关系的意义。
二、内容分析
1.集合是中学数学的一个重要的基本概念。在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。例如,下一章讲函数的概念与性质,就离不开集合与逻辑。
2.1.1节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。
3.这节课主要学习全章的引言和集合的基本概念。学习引言是引发学生的学习兴趣,使学生认识学习本章的意义。本节课的教学重点是集合的基本概念。
4.在初中几何中,点、直线、平面等概念都是原始的、不定义的概念,类似地,集合则是集合论中的原始的、不定义的`概念。在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识。教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集。”这句话,只是对集合概念的描述性说明。
三、教学过程
提出问题:
教科书引言所给的问题。
组织讨论:
为什么“回答有20名同学参赛”不一定对,怎么解决这个问题。
归纳总结:
1.可能有的同学两次运动会都参加了,因此,不能简单地用加法解决这个问题.
2.怎么解决这个问题呢?以前我们解一个问题,通常是先用代数式表示问题中的数量关系,再进一步求解,也就是先用数学语言描述它,把它数学化。这个问题与我们过去学过的问题不同,是属于与集合有关的问题,因此需要先用集合的语言描述它,完全解决问题,还需要更多的集合与逻辑的知识,这就是本章将要学习的内容了。
新课讲解:
1.集合的概念:(具体举例后,进行描述性定义)
(1)某种指定的对象集在一起就成为一个集合,简称集。
(2)元素:集合中的每个对象叫做这个集合的元素。
(3)集合中的元素与集合的关系:
a是集合A的元素,称a属于集合A,记作a∈A;
a不是集合A的元素,称a不属于集合A,记作。
例如,设B={1,2,3,4,5},那么5∈B,
注:集合、元素概念是数学中的原始概念,可以结合实例理解它们所描述的整体与个体的关系,同时,应着重从以下三个元素的属性,来把握集合及其元素的确切含义。
①确定性:集合中的元素是确定的,即给定一个集合,任何一个对象是不是这个集合的元素也就确定了。
例如,像“我国的小河流”、“年轻人”、“接近零的数”等都不能组成一个集合。
②互异性:集合中的元素是互异的,即集合中的元素是没有重复的。
此外,集合还有无序性,即集合中的元素无顺序。
例如,集合{1,2},与集合{2,1}表示同一集合。
2.常用的数集及其记法:
全体非负整数的集合通常简称非负整数集(或自然数集),记作N,非负整数集内排除0的集,表示成或;
全体整数的集合通常简称整数集,记作Z;
全体有理数的集合通常简称有理数集,记作Q;
全体实数的集合通常简称实数集,记作R。
注:①自然数集与非负整数集是相同的,就是说,自然数集包括数0,这与小学和初中学习的可能有所不同;
②非负整数集内排除0的集,也就是正整数集,表示成或。其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成或。负整数集、正有理数集、正实数集等,没有专门的记法。
课堂练习:
教科书1.1节第一个练习第1题。
归纳总结:
1.集合及其元素是数学中的原始概念,只能作描述性定义。学习时应结合实例弄清其含义。
2.集合中元素的特性中,确定性可以用于判定某些对象是否是给定集合的元素,互异性可用于简化集合的表示,无序性可以用于判定集合间的关系(如后面要学习的包含或相等关系等)。
四、布置作业
教科书1.1节第一个练习第2题(直接填在教科书上)。
初中教学课件 2
教学目标:
1、在具体情境中,使学生感受集合的思想,感知维恩图的产生过程。
2、能借助直观图,利用集合的思想方法解决简单的实际问题,同时使学生在解决问题的过程中,进一步体会集合的思想,进而形成策略。
3、培养学生善于观察、善于思考的学习习惯。使学生感受到数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题,体验解决问题策略的多样性。
教学重点:借助直观图初步体会集合的思想方法。
教学难点:对重叠部分的理解
教学准备:课件、课前小研究、姓名卡片
教学过程:
一、激趣导入
今天我们先一起来看一看一道有趣的数学题,请同学们拿出课前小研究,仔细看研究一,回顾下你的想法。(课前小研究第1题)
研究一:小明排队去做操,从前数起小明排第3,从后数起小明排第4,你猜这排小朋友一共有几人?(先画图再列式)
这道趣味数学题有什么特点?今天我们就一起走进数学广角,来研究有重复现象的数学问题。
二、探究新知
(1)小组讨论汇报方法(课前小研究第2题)
研究二:新的学期已经过了一个多月,这段时间同学们进步特别大,像个大孩子了,又懂事又听话,上学期的暑期作业就有很多同学完成的特别好,老师要提出表扬其中语文完成优秀的同学和数学完成优秀的同学。(语9人,数8人,重复3人)一起看研究二的第1小题,小组内说一说你的想法。
你们知道老师一共表扬了多少名同学吗?你是怎么想的?能不能用图、表或其他方式清楚的.展示出来?(可以先制作名字卡片,试着摆一摆,再画出来)
根据学生的汇报适时引导,提出:
语文表扬9人,数学表扬8人,为什么一共表扬的不是17人呢?怎么看出来的?
如何表示出语文、数学都表扬的同学?
(2)全班游戏验证方法
现在我们就一起来验证刚才大家的方法哪种最清楚、最直观?请老师表扬作业完成好的同学到前面来,语文表扬的站在左边,数学表扬的站在右边,你们看看应该怎么站?
3个重复的,你们站在哪?站语文那边吗?还是站在数学这边?大家帮帮他们,想一想应该站在哪儿最合适?(中间)为什么?
那左边、右边、中间分别表示什么?(左边是语文表扬的,右边是数学表扬的,中间是语文和数学都表扬的)
(3)引导出用维恩图表示
如果把我们刚才站的队伍表示在黑板上,是什么样的?谁有好方法帮忙加工一下,试图可以更清楚地看出来他们之间的关系?(指定学生黑板画)都谁是这样想的?(给予肯定和表扬)
在数学上我们把所有语文表扬的同学看成一个整体,叫做一个集合;把所有数学表扬的同学看成一个整体,也是一个集合。这就是今天大家一起研究的集合。(板书:集合)
我们一起把集合中的具体内容用这个图更清楚、直观的展示了出来,你们知道吗?像这样的图早在很多年前就有人发明了,他就是英国的数学家维恩,所以就以“维恩”来命名,叫维恩图,也可以叫集合图。你们刚才也像科学家一样,把这个图创造出来了,真了不起!
(4)认识维恩图
我们既然能自己创造出维恩图,那你们知道图中每一部分都表示什么意思吗?(小组内先说一说,再指名汇报)
左边表示什么?右边表示什么?中间重叠部分表示的是什么?整个图表示的是什么?(左边集合表示什么?右边集合表示什么?)
(5)运用图解决问题
能不能根据你的图一眼就看出来应该怎么计算出一共表扬了多少名同学?(列式计算)独立解决,汇报交流,方法不唯一。
(9+8—3=14,6+3+5=14,9—3+8=14,8—3+9=14等,让学生在维恩图上边指边写)通过课件演示:9+8—3=14巩固重合问题的解决方法。
三、巩固练习
1、书105页做一做1
2、书107页5
3、三年级有20个同学参加竞赛,其中参加数学竞赛的有15人,参加作文竞赛的有11人。
(1)既参加数学竞赛又参加作文竞赛的有几人?
(2)只参加数学竞赛的有几人?
(3)只参加作文竞赛的有几人?
四、总结提升
同学们今天表现都很出色,谁愿意来说说今天有什么收获?和同学们一起分享。课后请大家留心观察,用今天学习的知识还能解决生活中的哪些问题?
初中教学课件 3
一、教材分析
说课的内容是:是人教版三年级下册第九单元“数学广角”的第一课时“简单的集合”。
《数学广角》内容的增设,它主要是介绍和渗透一些数学思想方法,涉及的重叠问题是日常生活中应用比较广泛的数学知识。是小学阶段集合思想教学。
二、学情分析
集合思想对于三年级学生来说并不陌生,在以往的题型中有过接触,只是无意识形成一些简单解决问题的方法。而本节课所要学的是含有重复部分的集合图,学生是第一次接触。教材中的例1通过统计表的方式列出参加比赛的学生名单,而总人数并不是这两项参赛的人数之和,从而引发学生的认知冲突。教材中是利用集合图(韦恩图)把这两项比赛人数的关系直观地表示出来,从而帮助学生找到解决问题的办法。教材要求只是让学生通过生活中容易理解的题材去初步体会集合思想,能够用自己的'方法解决问题,为后继学习打下必要的基础。对于教师应根据学生特点,适度让学生亲历集合图的形成过程,不必拔高要求,引导学生理解集合图各部分的意义,培养学生应用集合思想解决实际问题的能力,初步感受集合思想的奇妙与作用。
二、教学目标的制定
(一)知识与技能
1.适度让学生亲历集合思想方法的形成过程,初步理解集合知识的意义。
2.让学生借助直观图理解集合图中每一部分的含义,通过语言的描述和计算的方法,能解决简单的重复问题。
(二)过程与方法
通过观察、操作、实验、交流、猜测等活动,让学生在合作学习中感知集合图形成过程,体会集合图的优点,能直观看出重复部分,解决生活中的问题。
(三)情感态度与价值观
体验个体与小组合作探究相结合的学习过程,养成勤动脑,乐思考、巧运用的学习习惯,同时在这个过程中感受数学与生活的密切联系,体会数学的价值。
三、教学重难点
教学重点:了解集合图的产生过程,利用集合的思想方法解决有重复部分的问题。
教学难点:理解集合图的意义,会解决简单重复问题。
四、教学准备
多媒体课件、小白板、练习题卡
初中教学课件 4
一、教学目标:
1、理解集合圈里各部分的意义。
2、会读集合圈中的信息,会按条件填写集合圈。
3、使学生会借助直观图,利用集合的思想方法解决简单的实际问题。
二、教学重点:会读集合圈中的信息,会按条件填写集合圈。
三、教学难点:使学生会借助直观图,利用集合的思想方法解决简单的实际问题。
教学流程
一、脑筋急转弯导入:
1、两个爸爸和两个儿子去照相,可是照片上只有3个人。这是为什么呢?
2、学生各抒己见。
3、设置悬念:同学们的猜测都有各自的道理,但答案到底是什么呢?老师暂时还不想告诉你们,我相信通过下面的两个游戏,大家一定会自己找到答案的。
二、游戏体验,构建新知
1、开心转盘
请6名同学参加比赛。
介绍游戏规则:每人转动一次转盘,转盘停止后指针会停在相应的分数上,分数高者即获胜。参赛结束后把带有自己姓名的纸条贴在黑板上。游戏结束后奖励获胜的同学。
2、夹球
请5名同学参加比赛。
介绍比赛规则:学生面对面站立,一面三人,另一面两人,用小腿夹住球跑到对面交给另一名同学,依次这样做,球不落地即获胜。参赛结束后也把带有姓名的`纸条贴到黑板上。
3、游戏结束了,统计:参加这两项游戏的共有多少人?
4、下面请参加这两项游戏的同学到前面来,我们来检验一下是否有11人。
请参加开心转盘的同学站到这个圈里。请参加夹球的同学站到另一个圈里。
故作吃惊状:咦,参加夹球的还差2个人,在哪呢?赶快到前面来。
5、组织同学们想办法:他们俩站在哪比较合适呢?
6、结合学生的方法,指着开心转盘这个圈问学生:你能说说这个圈里表示什么吗?那另一边呢?中间表是什么?那你数一数到底有多少名同学参加了游戏?怎样列式?
7、揭示集合:在数学上,我们把参加“开心转盘”的同学看作一个整体,叫做一个集合;把参加“夹球”的同学看做一个整体,也是一个集合。
8、板书课题。
9、介绍维恩图。
10、介绍维恩。
三、分层练习,拓展提高
1、教材105页做一做的第1题
2、教材105页做一做的第2题
3、揭晓课前脑筋急转弯答案。
四、课堂小结,延伸铺垫
这节课你有哪些收获?
初中教学课件 5
教学目标:
1、使学生会借助直观图,利用集合的思想方法解决简单的实际问题。
2、使学生在解决实际问题的过程中体会集合的思想。
3、培养学生善于观察、善于思考,养成良好的学习习惯。
教学重点:使学生会借助直观图,利用集合的思想方法解决简单的实际问题。教学难点:使学生在解决实际问题的过程中体会集合的思想。
教学准备:多媒体课件
教学过程:
一、引入新课
1、出示图片
师:同学们,今天沈老师给大家带来了两个朋友,你们看他们是谁?(出示图片)
师:这两个你们喜欢吗?那你们喜欢谁呢?(先让学生说一说)
师:这样吧,我们调查一下,如果你喜欢松鼠的就用水彩笔把你的姓名写在红色纸片上,如果你喜欢熊的,就把你的姓名写在绿色纸片上,如果你两个都喜欢,你可以在两张上都写上你的姓名。
师:写好了吗?
师:为了方便,我们调查一个组好不好,请第二组的同学把你写的贴到黑板上相应的位置。如果你两个都喜欢的话,可以把你的两个姓名分别贴到他们的下面。
2、学生上来贴图
3、观察黑板上贴的情况,问:你发现了什么呢?
师:请同学们观察黑板,你发现了什么呢?
让学生说说
师:那么,喜欢ZIP和ZOOM的一共有多少人呢?
学生说(可能有人说12人也可能有人说其他的数)
二、探究:
1、四人小组合作,让学生用自己喜欢的方式表示喜欢ZIP和喜欢ZOOM的人数。
师:那么,到底有多少人呢?(如果还有意见,就让一个学生站起来,给全班同学数数,看看到底有多少人?确定12人。)
师:那么,实际是12人,可是计算出来是其他的呢?原因在哪里?
生回答
师:哪些同学重复计算了,谁上来给大家找一找?
请学生上来找出重复的人数,(师:贴哪里?)学生贴
师:重复的有6人,算了两次,而实际应该算一次,所以我把他重叠起来。(教师说着把这6人的纸片重叠起来)
师:刚刚,我们把他分成两类这样贴,很容易出错,那同学们想一想我们能不能用一些图、表或者自己喜欢的其他方式,把这份名单再整理一下,使我们清楚地看出喜欢ZIP的有哪些人?喜欢ZOOM的有哪些人?两样都喜欢的有哪些人?能不能?
生能
师:那这样吧,我们四人小组合作,合作之前给大家几点合作建议:
出示合作建议:
(1)四人小组讨论:说说打算用怎样的图或表来表示?
(2)四人小组动手在纸上画出方案。
2、展示并介绍方案
师:通过小组同学的努力,我发现我们的同学都已经有了方案,那哪个小组的同学来展示一下你们的成果呢?注意,展示的时候说说你是怎样设计的?
(1)请学生上来展示成果,并介绍方案。
(2)重点介绍集合圈图
3、看着集合圈计算总人数。
师:那么,现在你知道喜欢ZIP和ZOOM的同学一共有多少人吗?生报一遍
三、巩固练习:
1、把下面的动物的序号填在合适的位置。
师:同学们,你们喜欢动物吗?喜欢什么动物呢?(让学生说几个)那他是怎样行动的呢?那么,这些动物是怎样行动的`呢?(课件出示)请你按照他们的行动方式把他们的序号填在相应的集合圈里。
师:先请同学们说说怎样填,既快又不会错?
让学生发表一下自己的观点。
师:那你是怎样填的呢?问:这部分表示什么?这部分表示什么?这个大圈表示什么?这个大圈表示什么?
2、计算三(1)班加语文和数学课外兴趣小组的人数。
师:刚刚我们了解了同学们喜欢动物的情况,下面,我们走进三一班去了解以下他们参加兴趣小组的情况,请看这里。
(1)出示名单
(2)根据表格画出集合图
师:先请你根据这表格,画出集合图。
先让学生画出集合图。
教师边巡视边说:怎样画既快又对?
(3)展示集合图:
(4)放手让学生计算人数
(5)汇报,说说为什么这样计算。
3、让学生举一些生活中这样的例子。
师:其实在我们平常生活中像这样的例子还有很多,你们可以举例说一说吗?
4、我家招待客人,这些客人喜欢吃糖果的有4人,喜欢吃花生的有6人,喜欢吃花生又喜欢吃糖果的有2人,那么我应该准备花生多一点还是准备糖果多一点?
(1)说说应该准备什么多一点。
(2)提高:计算我家到底来了几个客人。
四、总结:
师:今天这节课我们一起研究了什么?你觉得自己学得怎样?
初中教学课件 6
教学内容:
三年级数学上册第九单元《数学广角》教学目标:
1.知识目标:使学生借助直观图,利用集合的思想方法解决简单的重叠问题,并能用数学语言表述。
2.能力目标:使学生感知集合图的产生过程,初步培养学生的建模意识和能力,渗透多种方法解决问题的意识。
3.情感目标:培养学生初步养成善于观察、善于思考的学习习惯。教学重难点:
使学生借助直观图,利用集合的思想方法解决简单的重叠问题,并能用数学语言进行描述。教具学具准备:
课件教学流程:
一、创设情境生成问题
1、我想试试同学们反映快不快,请大家猜个脑筋急转弯。两个妈妈和两个女儿去看电影,每人买一张票,却只买了三张票就顺利进入了电影院,为什么?【姥姥、妈妈、女儿】
2、两个妈妈【板书:2】,两个女儿【板书:2】,却只买了3张票【板书:3】。这2+2怎么会等于3?这里谁的身份最特殊?为什么?【妈妈的身份最特殊,有两个身份,既是姥姥的女儿又是女儿的妈妈。】【妈妈有两个身份,重复算了一次,板书:2+2-1=3】
3、今天,我们要研究的就是与这有关的一类问题。【板书:数学广角】窍门满街跑,看你找不找。这节课看谁找的窍门最多?谁表现1得最好?
二、探索交流解决问题
为迎接我校2014年校园科技艺术节的召开,学校将相继举行科技小制作和科技绘画比赛。要求每班5名同学参加科技小制作、6名同学参加科技绘画比赛。
这是三(1)班参加科技小制作和绘画比赛的学生名单。
你能从统计表中获得怎样的数学信息?你能提出怎样的数学问题?参加这两项比赛的共有多少人呢?谁来说一说?生:小制作的有5人,绘画的有6人,一共有11人。师:大家还有不同意见的吗?
请大家拿出纸和笔,在纸上写一写、画一画,看怎样方便我们数人数?然后小组交流。
用实物投影汇报或典型做法的同学去黑板板演。(连线、画图法)师:你更喜欢哪种方法?为什么?
生:集合图能使别人一看就知道参加小制作比赛的有哪些同学,参加绘画比赛的有哪些同学,两项比赛都参加的有哪些同学。在数学上,我们把参加小制作比赛的学生看作一个整体,叫做一个集合。(板书:集合)把参加绘画比赛的学生看作一个整体,也是一个集合。在100多年前的英国,有一个名叫韦恩的逻辑学家,就用一个集合图很方便的解决了我们今天遇到的'这个问题。(课件出示)因为是韦恩最早发明的,所以就以他的名字命名这种图,叫韦恩图。老师发现不少同学的想法和韦恩的一样,看来如果我们生的比他早,那就是用你的名字来命名了。我们一起来分析一下。
左边的圈表示的是什么?(参加小制作比赛的有5人。)右边的圈表示的是什么?(参加绘画比赛的有6人。)中间两个圈相交的部2分呢?【既参加小制作比赛,又参加绘画比赛的有2人。】去掉相交部分的左边的圈表示什么?(只参加小制作比赛的有3人。)去掉相交部分的右边的圈表示什么?(只参加绘画比赛的有4人。)
9、现在我们知道了可以用韦恩图,既能表示重复的部分,又能方便统计总数。三(1)班参加小制作的和参加绘画的到底一共有多少人?该怎样列式计算呢?(也可以只强化第一种方法)①算法1:5+6-2=9(人)
你是怎么想的?【先把参加制作比赛的和参加绘画比赛的加起来。算式是5+6=11,然后再用11减去2个重复的,11-2=9】②算法2:3+4+2=9(人)
请你解释一下。【3是只参加小制作比赛的,4是只参加绘画比赛的,2是两项比赛都参加的,即重复的】
③算法3:5+4=9(人)【参加小制作比赛的5人,加上只参加绘画比赛的4人】
④算法4:6+3=9(人)【参加绘画比赛的6人,加上只参加小制作比赛的3人】
刚才同学们想了很多算法,你觉得哪种比较容易理解。把你比较容易理解的那种算法,说给你的同桌听一下,是什么意思?
三、巩固应用内化提高
1、同学们累了吧,我们轻松一下,老师带领大家去动物世界看看吧,它们是谁呀?在这些动物当中有会飞的,会游泳的。找找哪些是会飞的,哪些是会游泳的,你能把它们的序号填到图中合适的位置上吗?
只会飞的有哪些?【②④⑧⑩】只会游泳的有哪些?【①⑤⑥⑨】
③天鹅、大雁放哪儿?【放中间】为什么放中间?【它既会飞又3会游泳】同意吗?
如果又来了一只小狗,应该把它放在哪呢? 【因为它既不会飞也不会游泳】
所以不能放在圈里,只能把它放在哪里?【圈外】同学们真了不起,没有被这样的问题迷惑住!
2、每班5名同学参加科技小制作、6名同学参加科技绘画比赛,其他班级可能会有多少人参加呢?
3、三年级有20个同学参加兴趣小组,其中参加数学小组的有15人,参加语文小组的有13人。
(1)既参加数学小组又参加语文小组的有几人?
(2)只参加数学小组的有几人?
(3)只参加语文小组的有几人?
四、回顾整理反思提升
通过这节课的学习,你有什么收获?
【初中教学课件】相关文章:
初中物理实验教学课件06-11
初中《妈妈》课件教案05-10
教学课件的作用04-08
《乡愁》教学课件10-03
《长城》的教学课件03-19
初中《陋室铭》教学课件(通用11篇)07-26
湘教版初中地理课件06-08
初中回忆鲁迅先生课件11-06
初中做情绪的主人课件07-17
扫盲班教学课件07-15